Cliques for Multi-Term Linearization of 0–1 Multilinear Program for Boolean Logical Pattern Generation

  • Kedong Yan
  • Hong Seo RyooEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 991)


0–1 multilinear program (MP) holds a unifying theory to Boolean logical pattern generation. For a tighter polyhedral relaxation of MP, this note exploits cliques in the graph representation of data under analysis to generate valid inequalities for MP that subsume all previous results and, collectively, provide a much stronger relaxation of MP. A preliminary numerical study demonstrates strength and practical benefits of the new results.


Logical analysis of data Pattern 0–1 multilinear programming 0–1 polyhedral relaxation Graph Clique 


  1. 1.
    IBM Corp.: IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual Version 12 Release 8 (2017). Accessed 12 Dec 2018
  2. 2.
    Crama, Y.: Concave extensions for nonlinear 0–1 maximization problems. Math. Program. 61, 53–60 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Del Pia, A., Khajavirad, A.: A polyhedral study of binary polynomial programs. Math. Oper. Res. 42(2), 389–410 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Del Pia, A., Khajavirad, A.: The multilinear polytope for acyclic hypergraphs. SIAM J. Optim. 28(2), 1049–1076 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Fortet, R.: L’algèbre de boole dt ses applications en recherche opérationnelle. Cahiers du Centre d’Études de Recherche Opérationnelle 1(4), 5–36 (1959)zbMATHGoogle Scholar
  6. 6.
    Fortet, R.: Applications de l’algèbre de boole en recherche opérationnelle. Revue Française d’Informatique et de Recherche Opérationnelle 4(14), 17–25 (1960)zbMATHGoogle Scholar
  7. 7.
    Glover, F., Woolsey, E.: Converting the 0–1 polynomial programming problem to a 0–1 linear program. Oper. Res. 12(1), 180–182 (1974)zbMATHCrossRefGoogle Scholar
  8. 8.
    Granot, F., Hammer, P.: On the use of boolean functions in 0–1 programming. Methods Oper. Res. 12, 154–184 (1971)Google Scholar
  9. 9.
    Lichman, M.: UCI Machine Learning Repository (2013). Accessed 12 Dec 2018
  10. 10.
    McCormick, G.: Computability of global solutions to factorable nonconvex programs: part I-convex underestimating problems. Math. Program. 10, 147–175 (1976)zbMATHCrossRefGoogle Scholar
  11. 11.
    Moon, J.W., Moser, L.: On cliques in graphs. Isr. J. Math. 3(1), 23–28 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Rikun, A.: A convex envelope formula for multilinear functions. J. Glob. Optim. 10, 425–437 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Ryoo, H.S., Jang, I.Y.: MILP approach to pattern generation in logical analysis of data. Discret. Appl. Math. 157, 749–761 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Ryoo, H.S., Sahinidis, N.: Analysis of bounds for multilinear functions. J. Glob. Optim. 19(4), 403–424 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Yan, K., Ryoo, H.S.: 0–1 multilinear programming as a unifying theory for LAD pattern generation. Discret. Appl. Math. 218, 21–39 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Yan, K., Ryoo, H.S.: Strong valid inequalities for Boolean logical pattern generation. J. Glob. Optim. 69(1), 183–230 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Yan, K., Ryoo, H.S.: A multi-term, polyhedral relaxation of a 0-1 multilinear function for Boolean logical pattern generation. J. Glob. Optim. (In press)

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer Science and Technology, School of Computer Science and EngineeringNanjing University of Science and TechnologyXuanwu District, NanjingPeople’s Republic of China
  2. 2.School of Industrial Management EngineeringKorea UniversitySeongbuk-GuRepublic of Korea

Personalised recommendations