Advertisement

Low-Rank Matrix Recovery with Ky Fan 2-k-Norm

  • Xuan Vinh DoanEmail author
  • Stephen Vavasis
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 991)

Abstract

We propose Ky Fan 2-k-norm-based models for the non-convex low-rank matrix recovery problem. A general difference of convex algorithm (DCA) is developed to solve these models. Numerical results show that the proposed models achieve high recoverability rates.

Keywords

Rank minimization Ky Fan 2-k-norm Matrix recovery 

References

  1. 1.
    Argyriou, A., Foygel, R., Srebro, N.: Sparse prediction with the \(k\)-support norm. In: NIPS, pp. 1466–1474 (2012)Google Scholar
  2. 2.
    Bhatia, R.: Matrix Analysis, Graduate Texts in Mathematics, vol. 169. Springer, New York (1997)Google Scholar
  3. 3.
    Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Candès, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Doan, X.V., Vavasis, S.: Finding the largest low-rank clusters with Ky Fan \(2\)-\(k\)-norm and \(\ell _1\)-norm. SIAM J. Optim. 26(1), 274–312 (2016)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Giraud, C.: Low rank multivariate regression. Electron. J. Stat. 5, 775–799 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jacob, L., Bach, F., Vert, J.P.: Clustered multi-task learning: a convex formulation. NIPS 21, 745–752 (2009)Google Scholar
  8. 8.
    Ma, T.H., Lou, Y., Huang, T.Z.: Truncated \(\ell _{1-2}\) models for sparse recovery and rank minimization. SIAM J. Imaging Sci. 10(3), 1346–1380 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Pham, D.T., Hoai An, L.T.: Convex analysis approach to dc programming: theory, algorithms and applications. Acta Mathematica Vietnamica 22(1), 289–355 (1997)Google Scholar
  10. 10.
    Pham, D.T., Hoai An, L.T.: A dc optimization algorithm for solving the trust-region subproblem. SIAM J. Optim. 8(2), 476–505 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Recht, B., Fazel, M., Parrilo, P.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3), 471–501 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Toh, K.C., Todd, M.J., Tütüncü, R.H.: SDPT3-a MATLAB software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11(1–4), 545–581 (1999)Google Scholar
  13. 13.
    Yin, P., Esser, E., Xin, J.: Ratio and difference of \(\ell _1\) and \(\ell _2\) norms and sparse representation with coherent dictionaries. Commun. Inf. Syst. 14(2), 87–109 (2014)MathSciNetGoogle Scholar
  14. 14.
    Yin, P., Lou, Y., He, Q., Xin, J.: Minimization of \(\ell _1-\ell _2\) for compressed sensing. SIAM J. Sci. Comput. 37(1), A536–A563 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Operations Group, Warwick Business SchoolUniversity of WarwickCoventryUK
  2. 2.The Alan Turing Institute, British LibraryLondonUK
  3. 3.Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada

Personalised recommendations