Advertisement

A Sequential Linear Programming Algorithm for Continuous and Mixed-Integer Nonconvex Quadratic Programming

  • Mohand BentobacheEmail author
  • Mohamed Telli
  • Abdelkader Mokhtari
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 991)

Abstract

In this work, we propose a new approach called “Sequential Linear Programming (SLP) algorithm” for finding an approximate global minimum of continuous and mixed-integer nonconvex quadratic programs (qps). In order to compare our algorithm with the existing approaches, we have developed an implementation with MATLAB and we presented some numerical experiments which compare the performance of our algorithm with the branch and cut algorithm implemented in CPLEX12.8 on 28 concave quadratic test problems, 64 nonconvex quadratic test problems and 12 mixed-integer nonconvex qps. The numerical results show that our algorithm has successfully found similar global objective values as CPLEX12.8 in almost all the considered test problems and it is competitive with CPLEX12.8, particularly in solving large problems (number of variables greater that 50 and less than 1000).

Keywords

Concave quadratic programming Nonconvex quadratic programming Mixed-integer quadratic programming Linear programming Approximate global optimum Extreme point Numerical experiments 

References

  1. 1.
    An, L.T.H., Tao, P.D.: A branch and bound method via dc optimization algorithms and ellipsoidal technique for box constrained nonconvex quadratic problems. J. Global Optim. 13(2), 171–206 (1998)Google Scholar
  2. 2.
    Absil, P.-A., Tits, A.L.: Newton-KKT interior-point methods for indefinite quadratic programming. Comput. Optim. Appl. 36(1), 5–41 (2007)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bentobache, M., Telli, M., Mokhtari, A.: A global minimization algorithm for concave quadratic programming. In: Proceedings of the 29th European Conference on Operational Research, EURO 2018, p. 329, University of Valencia, 08–11 July 2018Google Scholar
  4. 4.
    Bentobache, M., Telli, M., Mokhtari, A.: A simplex algorithm with the smallest index rule for concave quadratic programming. In: Proceedings of the Eighth International Conference on Advanced Communications and Computation, INFOCOMP 2018, pp. 88–93, Barcelona, Spain, 22–26 July 2018Google Scholar
  5. 5.
    Chinchuluun, A., Pardalos, P.M., Enkhbat, R.: Global minimization algorithms for concave quadratic programming problems. Optimization 54(6), 627–639 (2005)MathSciNetCrossRefGoogle Scholar
  6. 6.
    CPLEX12.8, IBM Ilog. Inc., NY (2017)Google Scholar
  7. 7.
    Floudas, C.A., Pardalos, P.M., Adjiman, C., Esposito, W.R., Gumus, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Nonconvex Optimization and its Applications. Springer, Boston (1999)CrossRefGoogle Scholar
  8. 8.
    Globallib: Gamsworld global optimization library. http://www.gamsworld.org/global/globallib.htm. Accessed 15 Jan 2019
  9. 9.
    Hiriart-Urruty, J.B., Ledyaev, Y.S.: A note on the characterization of the global maxima of a (tangentially) convex function over a convex set. J. Convex Anal. 3, 55–62 (1996)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Horst, R.: An algorithm for nonconvex programming problems. Math. Program. 10, 312–321 (1976)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Matlab2018a. Mathworks, Inc., NY (2018)Google Scholar
  12. 12.
    Pardalos, P.M., Rodgers, G.: Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45(2), 131–144 (1990)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Rusakov, A.I.: Concave programming under simplest linear constraints. Comput. Math. Math. Phys. 43(7), 908–917 (2003)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Strekalovsky, A.S.: Global optimality conditions for nonconvex optimization. J. Global Optim. 12(4), 415–434 (1998)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sung, Y.Y., Rosen, J.B.: Global minimum test problem construction. Math. Program. 24(1), 353–355 (1982)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Tao, P.D., An, L.T.H.: Convex analysis approach to DC programming: theory, algorithms and applications. Acta Math. Vietnam. 22, 289–355 (1997)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Telli, M., Bentobache, M.: Mokhtari, A: A Successive Linear Approximations Approach for the Global Minimization of a Concave Quadratic Program, Submitted to Computational and Applied Mathematics. Springer (2019)Google Scholar
  18. 18.
    Tuy, H.: Concave programming under linear constraints. Doklady Akademii Nauk SSSR 159, 32–35 (1964)MathSciNetGoogle Scholar
  19. 19.
    Tuy, H.: DC optimization problems. In : Convex analysis and global optimization. Springer optimization and its applications, vol. 110, pp. 167–228, Second edn. Springer, Cham (2016)Google Scholar
  20. 20.
    Wang, F.: A new exact algorithm for concave knapsack problems with integer variables. Int. J. Comput. Math. 96(1), 126–134 (2019)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Xia, W., Vera, J., Zuluaga, L. F.: Globally solving non-convex quadratic programs via linear integer programming techniques. arXiv preprint, arXiv:1511.02423v3 (2018)

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mohand Bentobache
    • 1
    Email author
  • Mohamed Telli
    • 1
  • Abdelkader Mokhtari
    • 1
  1. 1.Laboratory of Pure and Applied MathematicsUniversity Amar Telidji of LaghouatLaghouatAlgeria

Personalised recommendations