Advertisement

A DC Algorithm for Solving Multiobjective Stochatic Problem via Exponential Utility Functions

  • Ramzi KasriEmail author
  • Fatima Bellahcene
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 991)

Abstract

In this paper we suggest an algorithm for solving a multiobjective stochastic linear programming problem with normal multivariate distributions. The problem is first transformed into a deterministic multiobjective problem introducing the expected value criterion and an utility function. The obtained problem is reduced to a monobjective quadratic problem using a weighting method. This last problem is solved by DC algorithm.

Keywords

Multiobjective programming Stochastic programming DCA DC programming Utility function Expected value criterion 

References

  1. 1.
    Alarcon-Rodriguez, A., Ault, G., Galloway, S.: Multiobjective planning of distributed energy resources review of the state-of-the-art. Renew. Sustain. Energy Rev. 14(5), 1353–1366 (2010)Google Scholar
  2. 2.
    Ben Abdelaziz, F., Mejri, S.: Application of goal programming in a multi-objective reservoir operation model in Tunisia. Eur. J. Oper. Res. 133, 352–361 (2001)CrossRefGoogle Scholar
  3. 3.
    Ben Abdelaziz, F., Lang, P., Nadeau, R.: Distributional unanimity in multiobjective stochastic linear programming. In: Clmaco, J. (ed.) Multicriteria Analysis. Springer-Verlag, Heidelberg (1997)CrossRefGoogle Scholar
  4. 4.
    Ben Abdelaziz, F.: L’efficacité en programmation multi-objectifs stochastique. Ph.D. Thesis, Université de Laval, Québec (1992)Google Scholar
  5. 5.
    Bravo, M., Gonzalez, I.: Applying stochastic goal programming: a case study on water use planning. Eur. J. Oper. Res. 2(196), 1123–1129 (2009)CrossRefGoogle Scholar
  6. 6.
    Caballero, R., Cerdá, E., del Mar Muñoz, M., Rey, L.: Stochastic approach versus multiobjective approach for obtaining efficient solutions in stochastic multiobjective programming problems. Eur. J. Oper. Res. 158(3), 633–648 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Caner, T.Z., Tamer, U.A.: Tactical level planning in float glass manufacturing with co- production, random yields and substitutable products. Eur. J. Oper. Res. 199(1), 252–261 (2009)CrossRefGoogle Scholar
  8. 8.
    Fazlollahtabar, H., Mahdavi, I.: Applying stochastic programming for optimizing production time and cost in an automated manufacturing system. In: International Conference on Computers & Industrial Engineering, Troyes, 6–9 July 2009, pp. 1226–1230 (2009)Google Scholar
  9. 9.
    Geoffrion, A.M.: Proper efficiency and the theory of vector maximimization. J. Math. Anal. Appl. 22(3), 618–630 (1968)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Goicoechea, A., Dukstein, L., Bulfin, R.T.: Multiobjective Stochastic Programming. The PROTRADE-Method. Operation Research Society of America (1976)Google Scholar
  11. 11.
    Klein, G., Moskowitz, H., Ravindran, A.: Interactive multiobjective optimization under uncertainty. Manag. Sci. 36(1), 58–75 (1990)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kumral, M.: Application of chance-constrained programming based on multiobjective simulated annealing to solve mineral blending problem. Eng. Optim. 35(6), 661–673 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Le Thi, H.A., Pham Dinh, T.: Solving a class of linearly constrained indefinitequadratic problems by DC algorithms. J. Glob. Optim. 11(3), 253–285 (1997b)CrossRefGoogle Scholar
  14. 14.
    Le Thi, H.A., Pham Dinh, T.: A continuous approach for globally solving linearly constrained quadratic zero-one programming problems. Optimization 50, 93–120 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Le Thi, H.A., Pham Dinh, T.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23–46 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Le Thi, H.A., Pham Dinh, T., Huynh, V.N.: Exact penalty and error bounds in DC programming. J. Glob. Opt. 52, 509–535 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Le Thi, H.A., Pham Dinh, T., Nguyen, C.N., Nguyen, V.T.: DC programming techniques for solving a class of nonlinear bilevel programs. J. Glob. Opt. 44, 313–337 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pham Dinh, T., Le Thi, H.A.: Convex analysis approach to DC programming: theory, algorithms and applications (dedicated to Professor Hoang Tuy on the occasion of his 70th birthday). Acta Math. Vietnam. 22, 289–355 (1997a)MathSciNetGoogle Scholar
  19. 19.
    Pham Dinh, T., Nguyen, C.N., Le Thi, H.A.: DC programming and DCA for globally solving the value-at-risk. Comput. Manag. Sci. 6, 477–501 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Teghem, J., Kunsch, P.: Application of multiobjective stochastic linear programming to power systems planning. Eng. Costs Prod. Econ. 9(13), 83–89 (1985)CrossRefGoogle Scholar
  21. 21.
    Teghem, J., Dufrane, D., Thauvoye, M., Kunsch, P.L.: Strange, an interactive method for multiobjective stochastic linear programming under uncertainty. Eur. J. Oper. Res. 26(1), 65–82 (1986)CrossRefGoogle Scholar
  22. 22.
    Vahidinasab, V., Jadid, S.: Stochastic multiobjective self-scheduling of a power producer in joint energy & reserves markets. Electr. Power Syst. Res. 80(7), 760–769 (2010)CrossRefGoogle Scholar
  23. 23.
    Wang, Z., Jia, X.P., Shi, L.: Optimization of multi-product batch plant design under uncertainty with environmental considerations. Clean Technol. Environ. Policy 12(3), 273–282 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of SciencesLAROMAD, Mouloud Mammeri UniversityTizi-OuzouAlgeria

Personalised recommendations