Advertisement

Optimal Air Traffic Flow Management with Carbon Emissions Considerations

  • Sadeque HamdanEmail author
  • Oualid Jouini
  • Ali Cheaitou
  • Zied Jemai
  • Imad Alsyouf
  • Maamar Bettayeb
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 991)

Abstract

Air Transportation contributes in more than 2% of the total global emissions. In this paper, we formulate the air traffic flow management (ATFM) problem as a bi-objective mixed integer linear programming model that minimizes the carbon dioxide (CO2) emissions and the total delay cost. The model is solved using a Pareto-based scalarization technique called the weighted comprehensive criterion method. A numerical example is used to illustrate the effect of considering CO2 emissions on the ATFM network. A Pareto front is developed to illustrate the trade-off between CO2 emissions and the total delay costs. The results showed that reducing 1 kg of CO2 emissions comes at a delay cost of 1.22 €. This result can be beneficial for decision makers in determining penalty values and setting aviation emission policies.

Keywords

Air holding Ground holding Air traffic flow management Environment Carbon emissions 

Notes

Acknowledgement

The authors would like to thank Prof. Ali Akgunduz, Professor of Mechanical, Industrial and Aerospace Engineering at Concordia University – Canada, for providing the fuel consumption data used in this study.

This work was supported by the University of Sharjah [grant number 1702040585].

References

  1. 1.
    Dekker, R., Bloemhof, J., Mallidis, I.: Operations Research for green logistics - an overview of aspects, issues, contributions and challenges. Eur. J. Oper. Res. 219, 671–679 (2012)CrossRefGoogle Scholar
  2. 2.
    Gössling, S., Broderick, J., Upham, P., Ceron, J.P., Dubois, G., Peeters, P., Strasdas, W.: Voluntary carbon offsetting schemes for aviation: efficiency, credibility and sustainable tourism. J. Sustain. Tour. 15, 223–248 (2007)CrossRefGoogle Scholar
  3. 3.
    European Commission: Reducing emissions from aviation. https://ec.europa.eu/clima/policies/transport/aviation_en. Accessed 4 Feb 2019
  4. 4.
    Hayward, J.A., O’Connell, D.A., Raison, R.J., Warden, A.C., O’Connor, M.H., Murphy, H.T., Booth, T.H., Braid, A.L., Crawford, D.F., Herr, A., Jovanovic, T., Poole, M.L., Prestwidge, D., Raisbeck-Brown, N., Rye, L.: The economics of producing sustainable aviation fuel: a regional case study in Queensland Australia. GCB Bioenergy 7, 497–511 (2015)CrossRefGoogle Scholar
  5. 5.
    Clarke, J.-P., Lowther, M., Ren, L., Singhose, W., Solak, S., Vela, A., Wong, L.: En route traffic optimization to reduce environmental impact. http://web.mit.edu/aeroastro/partner/reports/proj5/proj5-enrouteoptimiz.pdf (2008)
  6. 6.
    Bertsimas, D., Patterson, S.S.: The air traffic flow management problem with enroute capacities. Oper. Res. 46, 406–422 (1998)CrossRefGoogle Scholar
  7. 7.
    Bertsimas, D., Patterson, S.S.: The traffic flow management rerouting problem in air traffic control: a dynamic network flow approach. Transp. Sci. 34, 239–255 (2000)CrossRefGoogle Scholar
  8. 8.
    Lulli, G., Odoni, A.: The European air traffic flow management problem. Transp. Sci. 41, 431–443 (2007)CrossRefGoogle Scholar
  9. 9.
    Agustín, A., Alonso-Ayuso, A., Escudero, L.F., Pizarro, C.: On air traffic flow management with rerouting. Part I: deterministic case. Eur. J. Oper. Res. 219, 156–166 (2012)Google Scholar
  10. 10.
    Agustín, A., Alonso-Ayuso, A., Escudero, L.F., Pizarro, C.: On air traffic flow management with rerouting. Part II: stochastic case. Eur. J. Oper. Res. 219, 167–177 (2012)Google Scholar
  11. 11.
    Diao, X., Chen, C.H.: A sequence model for air traffic flow management rerouting problem. Transp. Res. Part E Logist. Transp. Rev. 110, 15–30 (2018)CrossRefGoogle Scholar
  12. 12.
    Mukherjee, A., Hansen, M.: A dynamic rerouting model for air traffic flow management. Transp. Res. Part B Methodol. 43, 159–171 (2009)CrossRefGoogle Scholar
  13. 13.
    Andreatta, G., Dell’olmo, P., Lulli, G.: An aggregate stochastic programming model for air traffic flow management. Eur. J. Oper. Res. 215, 697–704 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Bertsimas, D., Gupta, S.: Fairness and collaboration in network air traffic flow management: an optimization approach. Transp. Sci. 50, 57–76 (2015)CrossRefGoogle Scholar
  15. 15.
    Chen, J., Cao, Y., Sun, D.: Modeling, optimization, and operation of large-scale air traffic flow management on spark. J. Aerosp. Inf. Syst. 14, 504–516 (2017)Google Scholar
  16. 16.
    Hamdan, S., Cheaitou, A., Jouini, O., Jemai, Z., Alsyouf, I., Bettayeb, M.: On fairness in the network air traffic flow management with rerouting. In: 2018 9th International Conference on Mechanical and Aerospace Engineering (ICMAE), pp. 100–105. IEEE, Budapest, Hungary (2018)Google Scholar
  17. 17.
    Hamdan, S., Cheaitou, A., Jouini, O., Jemai, Z., Alsyouf, I., Bettayeb, M.: An environmental air traffic flow management model. In: 2019 8th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO). IEEE, Bahrain (2019)Google Scholar
  18. 18.
    Akgunduz, A., Kazerooni, H.: A non-time segmented modeling for air-traffic flow management problem with speed dependent fuel consumption formulation. Comput. Ind. Eng. 122, 181–188 (2018)CrossRefGoogle Scholar
  19. 19.
    Hamdan, S., Larbi, R., Cheaitou, A., Alsyouf, I.: Green Traveling purchaser problem model: a bi-objective optimization approach. In: 2017 7th International Conference on Modeling, Simulation, and Applied Optimization, ICMSAO 2017. IEEE, United Arab Emirates (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Laboratoire Genie Industriel, CentraleSupélecUniversité Paris-SaclayGif-sur-YvetteFrance
  2. 2.Industrial Engineering and Engineering Management DepartmentUniversity of SharjahSharjahUnited Arab Emirates
  3. 3.Electrical and Computer Engineering DepartmentUniversity of SharjahSharjahUnited Arab Emirates
  4. 4.Sustainable Engineering Asset Management (SEAM) Research GroupUniversity of SharjahSharjahUnited Arab Emirates
  5. 5.Center of Excellence in Intelligent Engineering Systems (CEIES)King Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  6. 6.OASIS – ENITUniversity of Tunis ElmanarTunisTunisia

Personalised recommendations