A Continuous Competitive Facility Location and Design Problem for Firm Expansion

  • Boglárka G.-TóthEmail author
  • Laura Anton-Sanchez
  • José Fernández
  • Juana L. Redondo
  • Pilar M. Ortigosa
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 991)


A firm wants to expand its presence in a given geographical region. The available budget can be invested in opening a new facility and/or modifying the qualities of the existing firm-owned facilities. The firm can also close some of its existing facilities in order to invest the money formerly devoted to them to its other facilities or to the new one (in case it is finally open). A MINLP formulation is proposed to model this new problem. Both an exact interval branch-and-bound method and an ad-hoc heuristic are proposed to solve the model. Some computational results are reported.


Facility location Competition Quality MINLP Interval analysis Heuristic 


  1. 1.
    Fernández, J., Pelegrín, B.: Using interval analysis for solving planar single-facility location problems: new discarding tests. J. Global Optim. 19(1), 61–81 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Fernández, J., Pelegrín, B., Plastria, F., Tóth, B.: Solving a Huff-like competitive location and design model for profit maximization in the plane. Eur. J. Oper. Res. 179(3), 1274–1287 (2007)CrossRefGoogle Scholar
  3. 3.
    Francis, R., Lowe, T., Tamir, A.: Demand point aggregation for location models. In: Drezner, Z., Hamacher, H. (eds.) Facility Location: Application and Theory, pp. 207–232. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: C++ Toolbox For Verified Computing I: Basic Numerical Problems: Theory, Algorithms and Programs. Springer-Verlag, Heidelberg (1995)zbMATHGoogle Scholar
  5. 5.
    Hansen, E., Walster, G.W.: Global Optimization Using Interval Analysis - Second Edition, Revised and Expanded. Marcel Dekker, New York (2004)zbMATHGoogle Scholar
  6. 6.
    Kearfott, R.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht (1996)CrossRefGoogle Scholar
  7. 7.
    Kearfott, R., Nakao, M., Neumaier, A., Rump, S.M., Shary, S.P., van Hentenryck, P.: Standardized notation in interval analysis. TOM 15(1), 7–13 (2010)zbMATHGoogle Scholar
  8. 8.
    Knüppel, O.: PROFIL/BIAS - a fast interval library. Computing 53(1), 277–287 (1993)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Redondo, J., Fernández, J., Arrondo, A., García, I., Ortigosa, P.: Fixed or variable demand? Does it matter when locating a facility? Omega 40(1), 9–20 (2012)CrossRefGoogle Scholar
  10. 10.
    Redondo, J., Fernández, J., García, I., Ortigosa, P.: A robust and efficient global optimization algorithm for planar competitive location problems. Ann. Oper. Res. 167(1), 87–106 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Tóth, B., Fernández, J.: Interval Methods For Single and Bi-Objective Optimization Problems - Applied to Competitive Facility Location Problems. Lambert Academic Publishing, Saarbrücken (2010)Google Scholar
  12. 12.
    Tóth, B., Fernández, J., Csendes, T.: Empirical convergence speed of inclusion functions for facility location problems. J. Comput. Appl. Math. 199, 384–389 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Tóth, B., Plastria, F., Fernández, J., Pelegrín, B.: On the impact of spatial pattern, aggregation, and model parameters in planar Huff-like competitive location and design problems. OR Spectr. 31(1), 601–627 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computational OptimizationUniversity of SzegedSzegedHungary
  2. 2.Department of Statistics, Mathematics and InformaticsMiguel Hernández UniversityElche (Alicante)Spain
  3. 3.Department of Statistics and Operations ResearchUniversity of MurciaMurciaSpain
  4. 4.Department of InformaticsUniversity of AlmeríaAlmeríaSpain

Personalised recommendations