Manifestation and Possible Reasons of ~60-Year Climatic Cycle in Correlation Links Between Solar Activity and Lower Atmosphere Circulation

  • Svetlana VeretenenkoEmail author
  • Maxim Ogurtsov
Conference paper
Part of the Springer Proceedings in Earth and Environmental Sciences book series (SPEES)


Temporal variability of correlation links observed between characteristics of the lower atmosphere and solar activity phenomena at the multidecadal time scale remains one of unresolved problems of solar-terrestrial physics. In this work we continue studying possible reasons for this variability. Temporal behavior of correlation coefficients between troposphere pressure at extratropical latitudes and sunspot numbers was compared with long-term changes in the evolution of large-scale circulation, the intensity of the stratospheric polar vortex and global temperature anomalies. It was shown that a roughly 60-year periodicity revealed in solar activity influences on troposphere pressure (development of extratropical baric systems) is closely related to changes in the large-scale circulation regime which accompany transitions between strong and weak states of the stratospheric polar vortex. It was suggested that the detected correlation reversals are caused by changes of the troposphere-stratosphere coupling associated with changes of the vortex intensity. It was shown that the changes of the polar vortex state and the corresponding changes in the regime of large-scale circulation may be related to global temperature variations, with a possible reason for these variations being long-term changes of total solar irradiance.


Solar activity Solar-atmospheric links 60-year cycle 


  1. 1.
    Veretenenko, S., Ogurtsov, M.: Regional and temporal variability of solar activity and galactic cosmic ray effects on the lower atmosphere circulation. Adv. Space Res. 49(4), 770–783 (2012)CrossRefGoogle Scholar
  2. 2.
    Veretenenko, S., Ogurtsov, M.: Stratospheric polar vortex as a possible reason for temporal variations of solar activity and galactic cosmic ray effects on the lower atmosphere circulation. Adv. Space Res. 54(12), 2467–2477 (2014)CrossRefGoogle Scholar
  3. 3.
    Schlesinger, M.E., Ramankutty, N.: An oscillation in the global climate system of period 65–70 years. Nature 367, 723–726 (1994)CrossRefGoogle Scholar
  4. 4.
    Knudsen, M.F., Seidenkrantz, M.-S., Jacobsen, B.H., Kuijpers, A.: Tracking the Atlantic multidecadal oscillation through the last 8,000 years. Nat. Commun. 2, 178 (2011).
  5. 5.
    Mantua, N.J., Hare, S.R.: The Pacific decadal oscillation. J. Oceanogr. 58, 35–44 (2002)CrossRefGoogle Scholar
  6. 6.
    Minobe, S.A.: 50–70 year oscillation over the North Pacific and North America. Geophys. Res. Lett. 24(6), 683–686 (1997)CrossRefGoogle Scholar
  7. 7.
    Gudkovich, Z.M., Karklin, V.P., Smolyanitsky, V.M., Frolov, I.E.: On the character and causes of the Earth’s climate change. Problemy Arktiki i Antarktiki 1(81), 15–23 (2009). (in Russian with English abstract)Google Scholar
  8. 8.
    Pudovkin, M.I., Raspopov, O.M.: The mechanism of action of solar activity on the state of the lower atmosphere and meteorological parameters: a review. Geomagn. Aeron. 32(5), 593–608 (1992)Google Scholar
  9. 9.
    Svensmark, H.: Cosmic rays and clouds. Space Sci. Rev. 93, 175–185 (2000)CrossRefGoogle Scholar
  10. 10.
    Tinsley, B.A.: The global atmospheric electric circuit and its effects on cloud microphysics. Rep. Progr. Phys 71(6), 066801 (2008)CrossRefGoogle Scholar
  11. 11.
    Vangengeim, G.Ya.: Principles of the macro-circulation methods of long-term meteorological forecasts for the Arctic. Trudy AANII 34, 11–66 (1952). (in Russian)Google Scholar
  12. 12.
  13. 13.
    Earth System Research Laboratory, NOAA.
  14. 14.
    World Data Center WDC-SILSO.
  15. 15.
    Stozhkov, YuI, Svirzhevsky, N.S., Bazilevskaya, G.A., Kvashnin, A.N., Makhmutov, V.S., Svirzhevskaya, A.K.: Long-term (50 years) measurements of cosmic ray fluxes in the atmosphere. Adv. Space Res. 44, 1124–1137 (2009)CrossRefGoogle Scholar
  16. 16.
    Torrence, C., Compo, G.P.: A practical guide to wavelet analyses. Bull. Amer. Meteorol. Soc. 79, 61–78 (1998)CrossRefGoogle Scholar
  17. 17.
    Avdyushin, S.I., Danilov, A.D.: The Sun, weather, and climate: a present-day view of the problem (Review). Geomagn. Aeron. 40, 545–555 (2000)Google Scholar
  18. 18.
    Kalnay, E., Kanamitsu, M., Kistler, R., et al.: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteorol. Soc. 77, 437–472 (1996)CrossRefGoogle Scholar
  19. 19.
    Baldwin, M.P., Dunkerton, T.J.: Stratospheric harbingers of anomalous weather regimes. Science 294, 581–584 (2001)CrossRefGoogle Scholar
  20. 20.
    GISS Surface Temperature Analysis.
  21. 21.
  22. 22.
    Hoyt, D.V., Shatten, K.H.: A discussion of plausible solar irradiance variations, 1700–1992. J. Geophys. Res. 98(A11), 18895–18906 (1993)CrossRefGoogle Scholar
  23. 23.
    Scafetta, N., Willson, R.C.: ACRIM total solar irradiance satellite composite validation versus TSI proxy models. Astrophys. Space Sci. 350(2), 421–442 (2014)CrossRefGoogle Scholar
  24. 24.
    Gray, L.J., Beer, J., Celler, M. et al.: Solar influences on climate. Rev. Geophys. 48, RG4001 (2010).
  25. 25.
    Stocker, T. F., Qin, D., Plattner, G.-K. et al.: IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge, United Kingdom and New York, NY, USA (2013)Google Scholar
  26. 26.
    Soon, W.W.-H.: Variable solar irradiance as a plausible agent for multidecadal variations in the Arctic-wide surface air temperature record of the past 130 years. Geophys. Res. Lett. 32, L16712 (2005). Scholar
  27. 27.
    Baumgaertner, A.J.G., Seppälä, A., Jöckel, P., Clilverd, M.A.: Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: Modulation of the NAM index. Atmos. Chem. Phys. 11, 4521–4531 (2011)CrossRefGoogle Scholar
  28. 28.
    Rozanov, E., Calisto, M., Egorova, T., Peter, T., Schmutz, W.: Influence of the precipitating energetic particles on atmospheric chemistry and climate. Surv. Geophys. 33, 483–501 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Ioffe Institute, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Central (Pulkovo) Astronomical Observatory, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations