Advertisement

Preliminary Estimation of the Non-dipole Part of the Geomagnetic Field in the Quaternary Period Based on the Investigation of Marine Magnetic Anomalies on the Carlsberg Ridge

  • Sergei A. MerkurievEmail author
  • Irina M. Demina
  • Sergei A. Ivanov
Conference paper
Part of the Springer Proceedings in Earth and Environmental Sciences book series (SPEES)

Abstract

Marine magnetic anomalies are continuous records of the history of geomagnetic field reversals preserved in oceanic crust over the past ~160 Myr. In addition, the shape of the magnetic anomalies depends on the effective inclinations of the external magnetic field vector \(I_{0}^{'}\) and the remanent magnetization vector \(I_{r}^{'}\) can be numerically expressed by the skewness parameter \(\theta = I_{r}^{'} + I_{0}^{'} - \pi\). By determining the values of theta from magnetic profiles the inclination of the remanent magnetization can be found which leads to estimates of the contribution of the averaged non-dipole field. We investigated a series of closely spaced magnetic profiles intersecting the axis of the Carlsberg Ridge near the equator, and intersecting the axial anomaly region (Brunhes normal polarity chron C1n) and adjacent anomalies (subchron C2, Matuyama chron). The observed inclination anomaly near the equator can be viewed as an evidence of presence of the quadrupole component in the averaged non-dipole field.

Keywords

Geomagnetic field Non-dipole part Paleomagnetism Marine magnetic anomalies 

Notes

Acknowledgements

In preparing the plots, the GMT program package [23] was used. We are grateful to Dr. Karl Fabian and Dr. Andrei Kosterov for critically reading the manuscript and constructive reviews.

References

  1. 1.
    Acton, G.D., Petronotis, K.E., Cape, C.D., Ilg, S.R., Gordon, R.G., Bryan, P.C.: A test of the geocentric axial dipole hypothesis from an analysis of the skewness of the central marine magnetic anomaly. Earth Planet Sci. Lett. 144, 337–346 (1996)CrossRefGoogle Scholar
  2. 2.
    Ben’kova, N.P., Khramov, A.N., Cherevko, T.N., Adam, N.V.: Spherical harmonic analysis of the paleomagnetic field. Earth Planet. Sci. Lett. 18, 141–147 (1973)Google Scholar
  3. 3.
    Cox, A.: The frequency of geomagnetic reversals and the symmetry of the non dipole field. Rev. Geophys. 13(3), 35–51 (1975)CrossRefGoogle Scholar
  4. 4.
    DeMets, C., Gordon, R.G., Argus, D.F.: Geologically current plate motions. Geophys. J. Int. 181(1), 1–80 (2010)CrossRefGoogle Scholar
  5. 5.
    Gay, S.P.: Standard curves for interpretation of magnetic anomalies over long tabular bodies. Geophysics 28, 161–200 (1963)CrossRefGoogle Scholar
  6. 6.
    International Association of Geomagnetism and Aeronomy (IAGA): Division V, Working group 8, international geomagnetic reference field 2000. Geophys. J. Int. 141, 259–262 (2000)Google Scholar
  7. 7.
    Ivanov, S.A., Merkuryev, S.A.: Some remarks on resolving and interpretation of short wavelength marine magnetic anomalies. In: Proceedings of the 11th International School and Conference “Problems of Geocosmos”, SPb.: VVM Publishing, pp. 37–44 (2016)Google Scholar
  8. 8.
    Ivanov, S.A., Merkuriev, S.A.: Preliminary results of the Geohistorical and Paleomagnetic analysis of marine magnetic anomalies in the northwestern Indian Ocean. In: Nurgaliev, D. et al. (eds.) Recent Advances in Rock Magnetism, Environmental Magnetism and Paleomagnetism. International Conference on Geomagnetism, Paleomagnetism and Rock Magnetism (Kazan, Russia), pp. 479–490. Springer International Publishing (2019)Google Scholar
  9. 9.
    Langel, R.A., Estes, R.H.: A geomagnetic field spectrum. Geophys. Res. Lett. 9, 250–253 (1982)CrossRefGoogle Scholar
  10. 10.
    Macmillan, S., Maus, S.: International geomagnetic reference field-the tenth generation. Earth Planets Space 57, 1135–1140 (2015)CrossRefGoogle Scholar
  11. 11.
    Merkouriev, S.A., Sotchevanova, N.A.: Structure and evolution of the Carlsberg Ridge: evidence for nonstationary spreading on old and modern spreading centers. Current Sci. 85, 334–338 (2003)Google Scholar
  12. 12.
    Merkouriev, S., DeMets, C.: Constraints on Indian plate motion since 20 Ma from dense Russian magnetic data: implications for Indian plate dynamics. Geochem. Geophys. Geosyst. 7, Q02002 (2006).  https://doi.org/10.1029/2005gc001079CrossRefGoogle Scholar
  13. 13.
    Merrill, R.T., McElhinny, M.W.: Anomalies in the time averaged paleomagnetic field and their implications for the lower mantle. Rev. Geophys. Space Phys. 15, 309–323 (1977)CrossRefGoogle Scholar
  14. 14.
    Merrill, R.T., McElhinny, M.W., McFadden, P.L.: The Magnetic Field of the Earth, p. 531. Academic Press, New York (1996)Google Scholar
  15. 15.
    Opdyke, N.D.: Paleomagnetism of deep-sea cores. Rev. Geophys. 10(1), 213–249 (1972)CrossRefGoogle Scholar
  16. 16.
    Roest, W.R., Arkani-Hamed, J., Verhoef, J.: The seafloor spreading rate dependence of the anomalous skewness of marine magnetic anomalies. Geophys. J. Int. 109(3), 653–669 (1992)CrossRefGoogle Scholar
  17. 17.
    Schneider, D.A.: An estimate of the long-term non-dipole field from marine magnetic anomalies. Geophys. Res. Lett. 15, 1105–1108 (1988)CrossRefGoogle Scholar
  18. 18.
    Schneider, D.A., Kent, D.V.: Inclination anomalies from Indian Ocean sediments and the possibility of a standing nondipole field. J. Geophys. Res. 93(B10), 11621–11630 (1988)CrossRefGoogle Scholar
  19. 19.
    Schneider, D.A., Kent, D.V.: The time-averaged paleomagnetic field. Rev. Geophys. 28(1), 71–96 (1990)CrossRefGoogle Scholar
  20. 20.
    Schouten, H.: A fundamental analysis of magnetic anomalies over oceanic ridges. Mar. Geophys. Res. 1(2), 111–144 (1971)CrossRefGoogle Scholar
  21. 21.
    Schouten, H., McCamy, K.: Filtering marine magnetic anomalies. J. Geophys. Res. 77, 7089–7099 (1972)CrossRefGoogle Scholar
  22. 22.
    Schouten, H., Cande, S.C.: Palaeomagnetic poles from marine magnetic anomalies. Geophys. J. R. Astron. Soc. 44, 567–575 (1976)CrossRefGoogle Scholar
  23. 23.
    Wessel, P., Smith, W.H.F.: Free software helps map and display data. Eos Trans. AGU 72, 441–446 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sergei A. Merkuriev
    • 1
    • 2
    Email author
  • Irina M. Demina
    • 1
  • Sergei A. Ivanov
    • 1
  1. 1.Pushkov Institute of Terrestrial Magnetism of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Earth Sciences, St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations