Physical Principles of Laser Ablation

  • Claudio Maurizio Pacella
  • Luca Breschi
  • Daria Bottacci
  • Leonardo Masotti


Laser ablation (LA) is a percutaneous tumor ablation technique that utilizes laser light delivered interstitially into the biological tissue to provoke a local hyperthermia according to a planned action. The laser light is coherent and monochromatic, it can be very collimated and focused and delivered though optical fibers with little loss of energy from the source to the target. The nature of the effects of the interaction of the laser light with the tissues depends on many factors, among which the most relevant are the laser wavelength, laser power, exposure time, pulse duration and repetition frequency in case of pulsed emission, the beam characteristics, the optical characteristics of the applicator, and physical properties of the tissue. Inside the biological tissue, light can be reflected, transmitted, scattered and absorbed. Only absorbed energy can produce biological effects while the other above-mentioned phenomena could affect the shape, the extension and the position of the warmed up volume. During the ablation process, coagulation becomes appreciable in the range of temperatures between 54 and 60 °C, depending on the heating rate. Above 60 °C, both the denaturation of larger structural proteins and cellular components accelerate, leading to widespread coagulation and rapid cell death in a duration of less than one second. Currently, most LA procedures use Nd:YAG (λ = 1064 nm) or semiconductor diode lasers (λ = 800–980 nm) operating in the range of 2–40 W. Laser fibers can be multiple and placed into the tissue and can be activated simultaneously to rapidly treat a large volume of tissue if the laser equipment has several laser sources inside. The cooled catheters are now a new technology, a progress for ablative techniques. These cooled systems allow avoiding a too rapid dehydration, reducing carbonization and then sublimation of the tissue which is a limiting factor in the efficiency of the ablation process in terms of the transfer of energy to the tissue itself. The most used guidance systems for positioning the applicator in the portion of tissue to be ablated is ultrasonic imaging; the least used is the systems using CT imaging, while the systems using Magnetic Resonance imaging are very interesting, but also they are very expensive, cumbersome and not so comfortable for the patient. They, however, allow to control in real-time of all the ablation phases from planning to final assessment of the ablative process.


Laser treatment Laser ablation Tumor treatment Minimally invasive treatment Tissue ablation Thermal ablation Image-guided interventions MR temperature imaging 


  1. 1.
    Townes CH. Optical masers and their possible applications to biology. Biophys J. 1962;2(2 Pt 2):325–9.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Maiman TH. Biomedical lasers evolve toward clinical applications. Hosp Manage. 1966;101(4):39–41.PubMedGoogle Scholar
  3. 3.
    Solon LR, Aronson R, Gould G. Physiological implications of laser beams. Science. 1961;134(3489):1506–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Bown SG. Phototherapy in tumors. World J Surg. 1983;7(6):700–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Muller GJ, Roggan A. Laser-induced interstitial thermotherapy. Bellingham, WA: SPIE-The International Society for Optical Engineering; 1995.Google Scholar
  6. 6.
    Jacques SL. Laser-tissue interactions. Photochemical, photothermal, and photomechanical. Surg Clin North Am. 1992;72(3):531–58.PubMedCrossRefGoogle Scholar
  7. 7.
    Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013;58(11):R37–61.PubMedCrossRefGoogle Scholar
  8. 8.
    Schena E, Saccomandi P, Fong Y. Laser ablation for cancer: past, present and future. J Funct Biomater. 2017;8(2):E19.PubMedCrossRefGoogle Scholar
  9. 9.
    Nikfarjam M, Christophi C. Interstitial laser thermotherapy for liver tumours. Br J Surg. 2003;90(9):1033–47.PubMedCrossRefGoogle Scholar
  10. 10.
    Saccomandi P, Schena E, Caponero MA, Di Matteo FM, Martino M, Pandolfi M, et al. Theoretical analysis and experimental evaluation of laser-induced interstitial thermotherapy in ex vivo porcine pancreas. IEEE Trans Biomed Eng. 2012;59(10):2958–64.PubMedCrossRefGoogle Scholar
  11. 11.
    Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;1(2):93–122.PubMedCrossRefGoogle Scholar
  12. 12.
    Stafford RJ, Shetty A, Elliott AM, Klumpp SA, McNichols RJ, Gowda A, et al. Magnetic resonance guided, focal laser induced interstitial thermal therapy in a canine prostate model. J Urol. 2010;184(4):1514–20.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperth. 2003;19(3):267–94.CrossRefGoogle Scholar
  14. 14.
    Dewey WC. Arrhenius relationships from the molecule and cell to the clinic. Int J Hyperth. 2009;25(1):3–20.CrossRefGoogle Scholar
  15. 15.
    Stafford RJ, Fuentes D, Elliott AA, Weinberg JS, Ahrar K. Laser-induced thermal therapy for tumor ablation. Crit Rev Biomed Eng. 2010;38(1):79–100.CrossRefGoogle Scholar
  16. 16.
    Schwarzmaier H-J, Goldbach T, Ulrich F, Schober R, Kahn T, Kaufmann R, et al. Improved laser applicators for interstitial thermotherapy of brain structures. In: Cerullo LJ, Heiferman KS, Liu H, Podbielska H, Wist AO, Zamorano LJ, editors. Proceedings of the clinical applications of modern imaging technology II, Los Angeles, CA, USA, 23 Jan 1994. Orlando, FL: International Society for Optics and Photonics; 1994. p. 4–12.Google Scholar
  17. 17.
    Amin Z, Donald JJ, Masters A, Kant R, Steger AC, Bown SG, et al. Hepatic metastases: interstitial laser photocoagulation with real-time US monitoring and dynamic CT evaluation of treatment. Radiology. 1993;187(2):339–47.PubMedCrossRefGoogle Scholar
  18. 18.
    Schroder T, Castren-Persons M, Lehtinen A, Taavitsainen M. Percutaneous interstitial laser hyperthermia in clinical use. Ann Chir Gynaecol. 1994;83(4):286–90.PubMedGoogle Scholar
  19. 19.
    Matthewson K, Coleridge-Smith P, O’Sullivan JP, Northfield TC, Bown SG. Biological effects of intrahepatic neodymium:yttrium-aluminum-garnet laser photocoagulation in rats. Gastroenterology. 1987;93(3):550–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Matsumoto R, Selig AM, Colucci VM, Jolesz FA. Interstitial Nd:YAG laser ablation in normal rabbit liver: trial to maximize the size of laser-induced lesions. Lasers Surg Med. 1992;12(6):650–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Pacella CM, Bizzarri G, Ferrari FS, Anelli V, Valle D, Bianchini A, et al. [Interstitial photocoagulation with laser in the treatment of liver metastasis]. Radiol Med. 1996;92(4):438–47.Google Scholar
  22. 22.
    Pacella CM, Bizzarri G, Francica G, Bianchini A, De Nuntis S, Pacella S, et al. Percutaneous laser ablation in the treatment of hepatocellular carcinoma with small tumors: analysis of factors affecting the achievement of tumor necrosis. J Vasc Interv Radiol. 2005;16(11):1447–57.PubMedCrossRefGoogle Scholar
  23. 23.
    Pacella CM, Francica G, Di Lascio FM, Arienti V, Antico E, Caspani B, et al. Long-term outcome of cirrhotic patients with early hepatocellular carcinoma treated with ultrasound-guided percutaneous laser ablation: a retrospective analysis. J Clin Oncol. 2009;27(16):2615–21.PubMedCrossRefGoogle Scholar
  24. 24.
    Huang GT, Wang TH, Sheu JC, Daikuzono N, Sung JL, Wu MZ, et al. Low-power laserthermia for the treatment of small hepatocellular carcinoma. Eur J Cancer. 1991;27(12):1622–7.PubMedCrossRefGoogle Scholar
  25. 25.
    Nolsoe CP, Torp-Pedersen S, Burcharth F, Horn T, Pedersen S, Christensen NE, et al. Interstitial hyperthermia of colorectal liver metastases with a US-guided Nd-YAG laser with a diffuser tip: a pilot clinical study. Radiology. 1993;187(2):333–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Vogl TJ, Mack MG, Straub R, Roggan A, Felix R. Magnetic resonance imaging-guided abdominal interventional radiology: laser-induced thermotherapy of liver metastases. Endoscopy. 1997;29(6):577–83.PubMedCrossRefGoogle Scholar
  27. 27.
    van Hillegersberg R, van Staveren HJ, Kort WJ, Zondervan PE, Terpstra OT. Interstitial Nd:YAG laser coagulation with a cylindrical diffusing fiber tip in experimental liver metastases. Lasers Surg Med. 1994;14(2):124–38.PubMedCrossRefGoogle Scholar
  28. 28.
    Moller PH, Lindberg L, Henriksson PH, Persson BR, Tranberg KG. Temperature control and light penetration in a feedback interstitial laser thermotherapy system. Int J Hyperth. 1996;12(1):49–63.CrossRefGoogle Scholar
  29. 29.
    Heisterkamp J, van Hillegersberg R, Sinofsky E, Ijzermans JN. Heat-resistant cylindrical diffuser for interstitial laser coagulation: comparison with the bare-tip fiber in a porcine liver model. Lasers Surg Med. 1997;20(3):304–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Sturesson C. Interstitial laser-induced thermotherapy: influence of carbonization on lesion size. Lasers Surg Med. 1998;22(1):51–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Mensel B, Weigel C, Hosten N. Laser-induced thermotherapy. Recent Results Cancer Res. 2006;167:69–75.PubMedCrossRefGoogle Scholar
  32. 32.
    Möller PH, Lindberg L, Henriksson PH, Persson BRR, Tranberg K-G. Interstitial laser thermotherapy: comparison between bare fibre and sapphire probe. Lasers Med Sci. 1995;10:193–200.CrossRefGoogle Scholar
  33. 33.
    Heisterkamp J, van Hillegersberg R, Ijzermans JN. Critical temperature and heating time for coagulation damage: implications for interstitial laser coagulation (ILC) of tumors. Lasers Surg Med. 1999;25(3):257–62.PubMedCrossRefGoogle Scholar
  34. 34.
    Muralidharan V, Christophi C. Interstitial laser thermotherapy in the treatment of colorectal liver metastases. J Surg Oncol. 2001;76(1):73–81.PubMedCrossRefGoogle Scholar
  35. 35.
    Steger AC, Lees WR, Shorvon P, Walmsley K, Bown SG. Multiple-fibre low-power interstitial laser hyperthermia: studies in the normal liver. Br J Surg. 1992;79(2):139–45.PubMedCrossRefGoogle Scholar
  36. 36.
    Germer CT, Albrecht D, Roggan A, Buhr HJ. Technology for in situ ablation by laparoscopic and image-guided interstitial laser hyperthermia. Semin Laparosc Surg. 1998;5(3):195–203.PubMedGoogle Scholar
  37. 37.
    Germer CT, Albrecht D, Isbert C, Ritz J, Roggan A, Buhr HJ. Diffusing fibre tip for the minimally invasive treatment of liver tumours by interstitial laser coagulation (ILC): an experimental ex vivo study. Lasers Med Sci. 1999;14(1):32–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Heisterkamp J, Van Hillegersberg R, Sinofsky EL, Ijzermans JNM. Interstitial laser photocoagulation with four cylindrical diffusing fibre tips: importance of mutual fibre distance. Lasers Med Sci. 1999;14:216–20.CrossRefGoogle Scholar
  39. 39.
    Heisterkamp J, van Hillegersberg R, Ijzermans JN. Interstitial laser coagulation for hepatic tumours. Br J Surg. 1999;86(3):293–304.PubMedCrossRefGoogle Scholar
  40. 40.
    Saccomandi P, Schena E, Giurazza F, Del Vescovo R, Caponero MA, Mortato L, et al. Temperature monitoring and lesion volume estimation during double-applicator laser-induced thermotherapy in ex vivo swine pancreas: a preliminary study. Lasers Med Sci. 2014;29(2):607–14.PubMedCrossRefGoogle Scholar
  41. 41.
    Vogl TJ, Muller PK, Hammerstingl R, Weinhold N, Mack MG, Philipp C, et al. Malignant liver tumors treated with MR imaging-guided laser-induced thermotherapy: technique and prospective results. Radiology. 1995;196(1):257–65.PubMedCrossRefGoogle Scholar
  42. 42.
    Vogl TJ, Mack MG, Roggan A, Straub R, Eichler KC, Muller PK, et al. Internally cooled power laser for MR-guided interstitial laser-induced thermotherapy of liver lesions: initial clinical results. Radiology. 1998;209(2):381–5.PubMedCrossRefGoogle Scholar
  43. 43.
    Vogl TJ, Eichler K, Straub R, Engelmann K, Zangos S, Woitaschek D, et al. Laser-induced thermotherapy of malignant liver tumors: general principals, equipment(s), procedure(s)—side effects, complications and results. Eur J Ultrasound. 2001;13(2):117–27.PubMedCrossRefGoogle Scholar
  44. 44.
    de Jode MG, Lamb GM, Thomas HC, Taylor-Robinson SD, Gedroyc WM. MRI guidance of infra-red laser liver tumour ablations, utilising an open MRI configuration system: technique and early progress. J Hepatol. 1999;31(2):347–53.PubMedCrossRefGoogle Scholar
  45. 45.
    Rieke V, Butts Pauly K. MR thermometry. J Magn Reson Imaging. 2008;27(2):376–90.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Diederich CJ, Nau WH, Kinsey A, Ross T, Wootton J, Juang T, et al. Catheter-based ultrasound devices and MR thermal monitoring for conformal prostate thermal therapy. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:3664–8.PubMedGoogle Scholar
  47. 47.
    Ahrar K, Gowda A, Javadi S, Borne A, Fox M, McNichols R, et al. Preclinical assessment of a 980-nm diode laser ablation system in a large animal tumor model. J Vasc Interv Radiol. 2010;21(4):555–61.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Claudio Maurizio Pacella
    • 1
  • Luca Breschi
    • 2
  • Daria Bottacci
    • 2
  • Leonardo Masotti
    • 3
  1. 1.Department of Diagnostic Imaging and Interventional RadiologyRegina Apostolorum HospitalAlbano LazialeItaly
  2. 2.Elesta SrlFlorenceItaly
  3. 3.Scientific Committee, El.En. S.p.A.FlorenceItaly

Personalised recommendations