Advertisement

Concepts and Criteria of Resolution

  • Barry R. MastersEmail author
Chapter
  • 79 Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 227)

Abstract

In the first chapter I defined the terms resolution, contrast, and magnification. I contrasted the terms resolution and magnification. I stressed the synergy between resolution and contrast in the microscope. In this chapter I discuss the various definitions and concepts that are used as metrics of resolution. In addition, I introduce some topics from physical optics and others from information theory that lead to a deeper understanding of the concept of resolution. I will answer the following questions about optical resolution and resolving power: What is resolution? How do we measure resolution? What limits resolution and what confounds our concepts and understanding of it? Then, I segue from a discussion of resolution concepts to the concept of superresolution, the content of Part III of this book.

References

  1. Adams, C. S., and Hughes, I. G. (2019). Optics f2f: From Fourier to Fresnel. Oxford: Oxford University Press.Google Scholar
  2. Abbe, E. (1873). Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. M. Schultze’s Archive für Mikroskopische Anatomie, IX, 413–468.Google Scholar
  3. Abbe, E. (1881). On the Estimation of Aperture in the Microscope. Journal of the Royal Microscopical Society, 1, 388–423.Google Scholar
  4. Airy, G. B. (1835). Diffraction of an object-glass with circular aperture. Trans. Cambridge Philosophical Society, 5, 283–291.Google Scholar
  5. Al-Amri, M., Liao, Z., and Zubairy, M. S. (2012). Beyond the Rayleigh Limit in Optical Lithography. In: Advances in Atomic, Molecular, and Optical Physics, 61, Amsterdam, Elsevier Inc., Chapter 8, pp. 409–466.Google Scholar
  6. Als-Nielsen, J., and McMorrow, D. (2001). Elements of Modern X-Ray Physics. Chichester: John Wiley & Sons Ltd.Google Scholar
  7. Baker, L., Editor (1992a). Selected Papers on Optical Transfer Function: Foundation and Theory. SPIE Milestone Series, MS 59. Bellingham: SPIE Optical Engineering Press.Google Scholar
  8. Baker, L., Editor (1992b). Selected Papers on Optical Transfer Function: Measurement. SPIE Milestone Series, MS 60. Bellingham: SPIE Optical Engineering Press.Google Scholar
  9. Barakat, R. (1962). Application of apodization to increase two-point resolution by the Sparrow criterion: I. Coherent illumination. J. Opt. Soc. Am., 52, 276–283.Google Scholar
  10. Barrett, H. H., and Myers, K. J. (2004). Foundations of Image Science. Hoboken: John Wiley & Sons, Inc.Google Scholar
  11. Born, M., and Wolf, E. (1999). Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Seventh edition (expanded). Cambridge: Cambridge University Press.Google Scholar
  12. Bradt, H. (2004). Astronomy Methods: A Physical Approach to Astronomical Observations. Cambridge: Cambridge University Press.Google Scholar
  13. Cremer, C., and Masters, B. R. (2013). Resolution enhancement techniques in microscopy. European Physical Journal, 38, 281–344. Open access publication.Google Scholar
  14. de Villiers, G., and Pike, E. R. (2016). The Limits of Resolution. Boca Raton, Florida: CRC Press.Google Scholar
  15. Duffieux, P. M. (1946). L’intégrale de Fourier et ses applications à l’optique. Paris: Masson, Editeur. Republished in English as: Duffieux, P. M. (1970). The Fourier Transform and Its Applications to Optics, Second edition. New York: John Wiley and Sons.Google Scholar
  16. Gaskill, J. D. (1978). Linear Systems, Fourier Transforms, and Optics. New York: Wiley-Interscience.Google Scholar
  17. Giacovazzo, C., Monaco, H. L., Artioli, G., Viterbo, D., Milanesio, M., Ferraris, G., Gilli, G., Gilli, P., Zanotti, G., and Catti, M. (2011). Fundamentals of Crystallography. Third edition. Oxford: Oxford University Press.Google Scholar
  18. Gonzalez, R. C., and Woods, R. E. (2008). Digital Imaging Processing. Third edition. Upper Saddle River: Pearson Prentice Hall.Google Scholar
  19. Goodman, J. W. (2015). Statistical Optics. Second edition. Hoboken: John Wiles & Sons, Inc., pp. 288–289.Google Scholar
  20. Goodman, J. W. (2017). Introduction to Fourier Optics. Fourth Edition. New York: W. H. Freeman and Company.Google Scholar
  21. Gray, R. M., and Goodman, J. W. (1995). Fourier transforms: An Introduction for Engineers. Boston: Kluwer Academic Publishers.Google Scholar
  22. Gustafsson, M. (2000). Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy, 198, 82–87.Google Scholar
  23. Hänninen, P. E., Hell, S. W., Salo, J., Soini, E., and Cremer, C. (1995). Two-photon excitation 4Pi confocal microscope: Enhanced axial resolution microscope for biological research. Applied Physics Letters, 66, 1698–1700.Google Scholar
  24. Hell, S. W., Lindek, S., Cremer, C., and Stelzer, E. H. K. (1994a). Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution. Applied Physics Letters, 64, 1335–1337.Google Scholar
  25. Hell, S. W., Stelzer, E. H. K., Lindek, S., and Cremer, C., (1994b). Confocal microscopy with an increased detection aperture: type-B 4Pi confocal microscopy. Optics Letters, 19, 222–224.Google Scholar
  26. Hell, S., and Stelzer, E. H. K. (1992a). Properties of a 4Pi confocal fluorescence microscope. Journal of the Optical Society of America A, 9, 2159–2166.Google Scholar
  27. Hell, S., and Stelzer, E. H. K. (1992b). Fundamental improvement of a 4Pi confocal fluorescence microscope using two-photon excitation. Optics Communications, 93, 277–282.Google Scholar
  28. Hell, S. (1990). Double confocal microscope. European Patent 0491289.Google Scholar
  29. Hopkins, H. H. (1950). Wave Theory of Aberrations. Oxford: Oxford University Press.Google Scholar
  30. Hopkins, H. H. (1951). The concept of partial coherence in optics. Proceedings of the Royal Society of London, Series A, 208, 263–277.Google Scholar
  31. Howard, J. N. (1964). John William Strutt, Third Baron Rayleigh. Applied Optics, 3, 1091–1101.Google Scholar
  32. Lipson, A, Lipson, S. G., and Lipson, H. (2011). Optical Physics. Fourth Edition: Cambridge University Press.Google Scholar
  33. Lukosz, W. (1966). Optical systems with resolving powers exceeding the classical limit, Part 1. Journal of the Optical Society of America A 56, 1463–1472.Google Scholar
  34. Lukosz, W. (1967). Optical systems with resolving powers exceeding the classical limit, Part 2. Journal of the Optical Society of America A, 57, 932–941.Google Scholar
  35. Lummer, O., and Reiche, F. (1910). Die Lehre von der Bildentstehung im Mikroskop von Ernst Abbe. Braunschweig: Friedrich View und Sohn.Google Scholar
  36. Madisetti, V. K., and Williams, D. B. (1998). The Digital Signal Processing Handbook. Boca Raton: CRC Press.Google Scholar
  37. Masters, B. R. (1996). Selected Papers on Confocal Microscopy. SPIE Milestone Series, MS 131. Bellingham: SPIE Optical Engineering Press.Google Scholar
  38. Masters, B. R. (2009). Lord Rayleigh: A scientific life. Optics and Photonics News, June, 32–41.Google Scholar
  39. McCutchen, C. W. (1967). Superresolution in microscopy and the Abbe resolution limit. Journal of the Optical Society of America A, 57, 1190–1192.Google Scholar
  40. Pendry, J. B. (2000). Negative refraction makes perfect lens. Physical Review Letters, 85, 3966–3969.Google Scholar
  41. Rayleigh, L. (1880a). Investigations in optics, with special reference to the spectroscope. 1: Resolving or separating, power of optical instruments. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, VIII XXXI, 261–274.Google Scholar
  42. Rayleigh, L. (1880b). On the resolving-power of telescopes. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, X, 116–119.Google Scholar
  43. Rayleigh, L. (1896). On the theory of optical images, with special reference to the microscope. London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 42, Part XV, 167–195.Google Scholar
  44. Rayleigh, L. (1899). Investigations in optics, with special reference to the spectroscope. In Scientific Papers by John William Strutt, Baron Rayleigh, Cambridge, Cambridge University Press, Vol. 1, pp. 415–459.Google Scholar
  45. Shannon, C. E. (1949). Communications in the presence of noise. Proceedings of the Institute of Radio Engineers, 37, 10–21.Google Scholar
  46. Schellenberg, F. M. (2004). Selected Papers on Resolution Enhancement Techniques in Optical Lithography. SPIE Milestone Series, MS 178. Bellingham: SPIE Press.Google Scholar
  47. Schellenberg, F. M. (2005). A history of resolution enhancement technology. Optical Review, 12, 83–89.Google Scholar
  48. Sheppard, C. J. R. (2007). Fundamentals of superresolution. Micron, 38, 165–169.Google Scholar
  49. Slayter, E. M., and Slayter, H. S. (1992). Light and Electron Microscopy. New York, Cambridge University Press.Google Scholar
  50. Sparrow, C. M. (1916). On spectroscopic resolving power. Astrophysical Journal, 44, 76–86Google Scholar
  51. Strutt, J. W. (1994). The collected optics papers of Lord Rayleigh. Part A, 1869–1892; Part B, 1892–1919. Washington, D.C.: Optical Society of America.Google Scholar
  52. Toraldo di Francia, G. (1952). Super gain antennas and optical resolving power. Il Nuovo Cimento Suppl., 9, 426–438.Google Scholar
  53. Toraldo di Francia, G. (1955). Resolving power and information. Journal of the Optical Society of America A, 45, 497–501.Google Scholar
  54. Van den Bos, A., and den Dekker, A. J. (1996). Coherent model-based optical resolution. Journal of the Optical Society of America A, 13, 1667–1669.Google Scholar
  55. Van Aert, S., Van Dyck, D., and den Dekker, A. J. (2006). Resolution of coherent and incoherent imaging systems reconsidered – Classical criteria and a statistical alternative. Optics Express, 14, 3830–3839.Google Scholar
  56. Van Aert, S., den Dekker, A. J., Van Dyck, D., and Van den Bos, A. (2007). The Notion of Resolution, in: Science of Microscopy, Vol. II, edited by Peter W. Hawkes, John C. H. Spence, New York: Springer.Google Scholar
  57. van Cittert, P. H. (1934). Die wahrscheinliche Schwingungsverteilung in einer von einer Lichtquelle direkt oder mittels einer Linse beleuchteten Ebene. Physica. 1: 201–210.Google Scholar
  58. Williams, C. S., and Becklund, O. A. (1989). Introduction to the Optical Transfer Function. New York: Wiley-Interscience.Google Scholar
  59. Williams, D. B., and Carter, C. B. (2009). Transmission Electron Microscopy, A Textbook for Materials Science, Second Edition. New York: Springer.Google Scholar
  60. Zernike, F. (1938). The concept of degree of coherence and its application to optical problems. Physica, 5, 785–795.Google Scholar

Further Reading

  1. Bracewell, R. N. (2000). The Fourier transform and its applications. Third Edition, New York: McGraw-Hill.Google Scholar
  2. De Graef, M., and McHenry, M. E. (2012). Structure of Material: An Introduction to Crystallography, Diffraction, and Symmetry. Second edition. Cambridge: Cambridge University Press.Google Scholar
  3. den Dekker, A. J., and van den Bos, A. (1997). Resolution: A survey. Journal of the Optical Society of America A, 14, 547–555.Google Scholar
  4. Fellgett, P. B., and Linfoot, E. H. (1955). On the assessment of optical images. Philosophical Transactions of the Royal Society A, 247, 369–407.Google Scholar
  5. Gabor, D. (1946). Theory of communication. Journal of IEEE, 93, 429–441.Google Scholar
  6. Grimes, D. N., and Thompson, B. J. (1967). Two-point resolution with partially coherent light. Journal of the Optical Society of America A, 57, 1330–1334.Google Scholar
  7. Hopkins, H. H. (1953). On the diffraction theory of optical images. Proceedings of the Physical Society, Series A, 217, 408–432.Google Scholar
  8. Hopkins, H. H. (1955). The frequency response of a defocused optical system. Proceedings of the Physical Society, 231, 91–103.Google Scholar
  9. Hopkins, H. H., and Barham, P. M. (1950). The influence of the condenser on microscopic resolution. Proceedings of the Physical Society, Section B, 63, Part 10, No. 370B, 737–744.Google Scholar
  10. Linfoot, E. H. (1964). Fourier Methods in Optical Image Evaluation. London: Focal Press.Google Scholar
  11. Lukosz, W., and Marchand, M. (1963). Optischen Abbildung Unter Überschreitung der Beugungsbedingten Auflösungsgrenze. Optica Acta, 10, 241–255.Google Scholar
  12. Mahajan, V. N. (1998). Optical Imaging and Aberrations. Part I: Ray Geometrical Optics. Bellingham: SPIE Press.Google Scholar
  13. Mahajan, V. N. (2001). Optical Imaging and Aberrations. Part II: Wave Diffraction Optics. Bellingham: SPIE Press.Google Scholar
  14. Mandel, L., and Wolf, E. (1990). Selected Papers on Coherence and Fluctuations of Light (1850–1966). SPIE Milestone Series, MS 19, Part I, Part II. Bellingham: SPIE Optical Engineering Press.Google Scholar
  15. Synge, E. H. (1928). A suggested method for extending microscopic resolution into the ultra-microscopic region. Philosophical Magazine, 6, 356–362.Google Scholar
  16. Sheppard, C. J. R. (1986). The spatial frequency cut-off in three-dimensional imaging. Optik, 72, 131–133.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Previously, Visiting Scientist Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Previously, Visiting Scholar Department of the History of ScienceHarvard UniversityCambridgeUSA

Personalised recommendations