Advertisement

Light-Sheet Fluorescence Microscopy

  • Barry R. MastersEmail author
Chapter
  • 111 Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 227)

Abstract

In light-sheet fluorescence microscopy (LSFM) the optical axes of the image-forming microscope objective and the objective providing illumination of the specimen are at right angles to one another (Olarte et al., 2018). A sheet of light is incident on the specimen, and fluorescence is produced and hence detected only in that plane. To obtain images of multiple planes for three-dimensional reconstruction the light-sheet is displaced relative to the specimen either by scanning the illumination or by moving the specimen through the light-sheet (Huber et al., 2001). LSFM has the intrinsic capability of optically sectioning the specimen. An LSFM differs markedly from epi-illumination fluorescence microscopes, in which illumination is incident on the entire specimen. The key advantage of LSFM lies in the associated decreased photobleaching and phototoxicity in the specimen—up to three orders of magnitude, depending on the specimen—as compared with an epi-illumination fluorescence microscope (Reynaud et al., 2008).

References

  1. Bassi, A., Schmid, B., and Huisken, J. (2015). Optical tomography complements light-sheet microscopy for in toto imaging of zebrafish development. Development, 142, 1016–1020.Google Scholar
  2. Berry, M. V., and Balazs, N. L. (1979). Nonspreading wave packets. American Journal of Physics, 47, 264–267.Google Scholar
  3. Boot, M. J., Westerberg, C. H., Sanz-Ezquerro, J., Cotterell, J., Schweitzer, R., Torres, M., and Sharpe, J. (2008). In vitro whole-organ imaging: 4D quantification of growing mouse limb buds. Nature Methods, 5(7), 609–612.  https://doi.org/10.1038/nmeth.1219. Epub 2008 May 30.
  4. Bouchal, Z., Wagner, J., and Chlup, M. (1998). Self-reconstruction of a distorted nondiffracting beam. Optics Communications, 151, 207–211.Google Scholar
  5. Brzobohatý, O., Čižmár, T., and Zemánek, P. (2008). High quality quasi-Bessel beam generated by round-tip axicon. Optics Express, 16, 12688–12700.Google Scholar
  6. Buytaert, J. A., and Dirckx, J. J. (2007). Design and quantitative resolution measurements of an optical virtual sectioning three-dimensional imaging technique for biomedical specimens, featuring two-micrometer slicing resolution. Journal of Biomedical Optics, 12, 014039-1—014039-113.Google Scholar
  7. Buytaert, J. A. N., Descamps, E., Adriaens, D., and Dirckx, J. J. J. (2012). Review Article. The OPFOS microscopy family: High-resolution optical sectioning of biomedical specimens. Anatomy Research International, 2012, Article ID 206238, 9 pages. http://dx.doi.org/10.1155/2012/206238 (Accessed April 3, 2019).
  8. Chen, B.-C., Legant, W. R., Wang, K., Shao, L., Milkie, D. E., Davidson, M. W., Janetopoulos, C., Wu, X. S., Hammer, J. A., Liu, Z., English, B. P., Mimori-Kiyosue, Y., Romero, D. P., Ritter, A. T., Lippincott-Schwartz, J., Fritz-Laylin, L., Mullins, R. D., Mitchell, D. M., Bembenek, J. N., Reymann, A.-C., Bӧhme, R., Grill, S. W., Wang, J. T., Seydoux, G., Tulu, U. S., Kiehart, D. P., and Betzig, E. (2014). Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution, Supplementary Materials. Science, 346, 1257998.  https://doi.org/10.1126/science.1257998 Medline.
  9. Chen, F., Tillberg, P. W., and Boyden, E. S. (2015). Optical imaging. Expansion microscopy. Science, 347, 543–548.Google Scholar
  10. Chen, F., Wassie, A. T., Cote, A. J., Sinha, A., Alon, S., Asano, S., Daugharthy, E. R., Chang, J-B., Marblestone, A., Church, G. M., Raj, A., and Boyden, E. S. (2016). Nanoscale imaging of RNA with expansion microscopy. Nature Methods, published online 4 July 2016,  https://doi.org/10.1038/nmeth.3899.
  11. Dodt, H-U., Leischner, U. Schierloh, A., Jährling, N., Mauch, C. P., Deininger, K., Deussing, J. M., Eder, M., Zieglgänsberger, W., and Becker, K. (2007). Ultramicroscopy: Three-dimensional visualization of neuronal networks in the whole mouse brain. Nature Methods, 4, 331–336.Google Scholar
  12. Dunsby, C. (2008). Optically sectioned imaging by oblique plane microscopy. Optics Express, 16, 20306–20316.Google Scholar
  13. Durnin, J. (1987). Exact solutions for nondiffracting beams. I. The scalar theory. Journal of the Optical Society of America A, 4, 651–654.Google Scholar
  14. Durnin, J., Miceli, Jr., J. J., and Eberly, J. H. (1987). Diffraction-free beams. Physical Review Letters, 58, 1499–1501.Google Scholar
  15. Durnin, J., Miceli Jr., J. J., and Eberly, J. H. (1988). Comparison of Bessel and Gaussian beams. Optics Letters, 13, 79–80.Google Scholar
  16. Fahrbach, F. O., Simon, P., and Rohrbach, A. (2010). Microscopy with self-reconstructing beams. Nature Photonics, 4, 780–785.Google Scholar
  17. Fauver, M., Seibel, E., Richard Rahn, J. R., Meyer, M. G., Patten, F. W., Neumann, T., and Nelson, A. C. (2005). Three-dimensional imaging of single isolated cell nuclei using optical projection tomography. Optics Express, 13, 4210–4223.Google Scholar
  18. Fuchs, E., Jaffe, J. S., Long, R. A., and Azam, F. (2002). Thin laser light-sheet microscope for microbial oceanography. Optics Express, 10, 145–154.Google Scholar
  19. Gao, R., Asano, S. M., Upadhyayula, S., Pisarev, I., Milkie, D. E., Liu, T-L., Singh, V., Graves, A., Huynh, G. H., Zhao, Y., Bogovic, J., Colonell, J., Ott, C. M., Zugates, C., Tappan, S., Rodriguez, A., Mosaliganti, K. R., Sheu, S-H., Pasolli, H. A., Pang, S., Xu, C. S., Megason, S. G., Hess, H., Lippincott-Schwartz, J., Hantman, A., Rubin, G. M., Kirchhausen, T., Saalfeld, S., Aso, Y., Boyden, E. S., Eric Betzig. E. (2019). Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science, 363, 245–261, January 18, 2019.  https://doi.org/10.1126/science.aau8302.
  20. Gao, L., Shao, L., Higgins, C. D., Poulton, J. S., Peifer, M., Davidson, M. W., Wu, X., Goldstein, B., and Betzig, E. (2012). Noninvasive imaging beyond the diffraction limit of three-dimensional dynamics in thickly fluorescent specimens. Cell, 151, 1370–1385.Google Scholar
  21. Gao, L., Shao, L., Chen, B.-C., and Betzig, E. (2014). three-dimensional live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy. Nature Protocols, 9, 1083–1101.Google Scholar
  22. Greger, K, Swoger, J., and Stelzer, E. H. (2007). Basic building units and properties of a fluorescence single plane illumination microscope. Review of Scientific Instruments, 78, 023705.Google Scholar
  23. Gualda, E. J., Vale, T., Almada, P., Feijó, J. A., Martins, G. G., and Moreno, N. (2013). OpenSpinMicroscopy: An open-source integrated microscopy platform. Nature Methods, 10, 599–600. https://sites.google.com/site/openspinmicroscopy/ (Accessed April 3, 2019).
  24. Gutiérrez-Vega, J. C., Iturbe-Castillo, M. D., and Chávez-Cerda, S. (2000). Alternative formulation for invariant optical fields: Mathieu beams. Optics Letters, 25, 1493–1495.Google Scholar
  25. Haisch, C. (2012). Optical tomography. Annual Review Analytical Chemistry, 5, 57–77.Google Scholar
  26. Holekamp, T. F., Turaga, D., and Holy, T. E. (2008). Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron, 57, 661–672.Google Scholar
  27. Huber, D., Keller, M., and Robert, D. (2001). three-dimensional light scanning macrography. Journal of Microscopy, 203, 208–213.Google Scholar
  28. Huisken, J., Swoger, J., Del Bene, F. Wittbrodt, J., and Stelzer, E. H. K. (2004). Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science, 305, 1007–1009.Google Scholar
  29. Huisken, J., and Stainier, D. Y. R. (2007). Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Optics Letters, 32, 2608–2610.Google Scholar
  30. Huisken, J., and Stainier, D. Y. R. (2009). Selective plane illumination microscopy techniques in developmental biology. Development, 136, 1963–1975.Google Scholar
  31. Kak, A. C., and Slaney, M. (1988). Principles of computerized tomographic imaging. IEEE Press.Google Scholar
  32. Keller, P. J., and Stelzer, E. H. K. (2008). Quantitative in vivo imaging of entire embryos with digital scanned laser light-sheet fluorescence microscopy. Current Opinion in Neurobiology, 18, 624–632.Google Scholar
  33. Keller, P. J., Schmidt, A. D., Santella, A., Khairy, K., Bao, Z., Wittbrodt, J., and Stelzer, E. H. K. (2010). Fast, high-contrast imaging of animal development with scanned light-sheet-based structured-illumination microscopy. Nature Methods, 7, 637–642.Google Scholar
  34. Keller, P. J., Ahrens, M. B., and Freeman J. (2015). Light-sheet imaging for systems neuroscience. Nature Methods, 12, 17–29.Google Scholar
  35. Krzic, U., Gunther, S., Saunders, T. E., Streichan, S. J., and Hufnagel, L. (2012). Multiview light-sheet microscope for rapid in toto imaging. Nature Methods, 9, 730–733.Google Scholar
  36. Kikuchi, S., and Sonobe, K. (1994). Three-dimensional computed tomography for optical microscopes. Optics Communications, 107, 432–444.Google Scholar
  37. Kumar, A., Wu, Y., Christensen, R., Chandris, P., Gandler, W., McCreedy, E., Bokinsky, A., Colón-Ramos, D. A., Bao, Z., McAuliffe, M., Rondeau, G., and Shroff, H. (2014). Dual-view plane illumination microscopy for rapid and spatially isotropic imaging. Nature Protocols, 9, 2555–2573.Google Scholar
  38. Lim, D., Chu, K. K., and Mertz, J. (2008). Wide-field fluorescence sectioning with hybrid speckle and uniform-illumination microscopy. Optics Letters, 33, 1819–1821.Google Scholar
  39. Lim, D., Ford, T. N., Chu, K. K., and Mertz, J. (2011). Optically sectioning imaging with speckle illumination HiLo microscopy. Journal of Biomedical Optics, 16, 016014.Google Scholar
  40. Lindek, S., Pick, R., and Stelzer, E. H. K. (1994). Confocal theta microscope with three objectives lenses. Review of Scientific Instruments, 65, 3367–3372.Google Scholar
  41. Lindek, S., and Stelzer, E. H. K. (1994). Confocal theta microscopy and 4Pi-confocal theta microscopy. In: C. J. Cogswell and K. Carlsson (Eds.), Three-dimensional microscopy, image acquisition and processing. SPIE, v. 2184 of Proceedings of the SPIE, p. 188.Google Scholar
  42. Liu, T.-L. et al. (2018). Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science, 360, 284–297. eaaq1392 (2018).  https://doi.org/10.1126/science.aaq1392. Supplementary Materials www.sciencemag.org/content/360/6386/eaaq1392/suppl/DC1 (Accessed April 3, 2019). [Science 360, eaaq1392 (2018).  https://doi.org/10.1126/science.aaq1392. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Tsung-Li Liu, Srigokul Upadhyayula, Daniel E. Milkie, Ved Singh, Kai Wang, Ian A. Swinburne, Kishore R. Mosaliganti, Zach M. Collins, Tom W. Hiscock, Jamien Shea, Abraham Q. Kohrman, Taylor N. Medwig, Daphne Dambournet, Ryan Forster, Brian Cunniff, Yuan Ruan, Hanako Yashiro, Steffen Scholpp, Elliot M. Meyerowitz, Dirk Hockemeyer, David G. Drubin, Benjamin L. Martin, David Q. Matus, Minoru Koyama, Sean G. Megason, Tom Kirchhausen, Eric Betzig].
  43. Manton, J. D., and Rees, E. J. (2016). triSPIM: light-sheet microscopy with isotropic super-resolution. Optics Letters, 41, 4170–4173.Google Scholar
  44. Mayer, J., Robert-Moreno, A., Danuser, R., Stein, J. V., Sharpe, J., and Swoger J. (2014). OPTiSPIM: Integrating optical projection tomography in light-sheet microscopy extends specimen characterization to nonfluorescent contrasts. Optics Letters, 39, 1053–1056.Google Scholar
  45. McDole, K., Guignard, L., Amat, F., Berger, A., Malandain, G., Royer, L. A., Turaga, S., C., Branson, K., and Keller, P. J. (2018). In toto imaging and reconstruction of post-implantation mouse development at the single-cell level. Cell, 175, 1–18.  https://doi.org/10.1016/j.cell.2018.09.031 (Accessed April 3, 2019).
  46. McGloin, D., and Dholakia, K. (2005). Bessel beams: Diffraction in a new light. Contemporary Physics, 46, 15–28.Google Scholar
  47. McLachlan, D., Jr. (1968). Microscope. US Patent 3,398,634. August 27, 1968.Google Scholar
  48. Mertz, J. (2011). Optical sectioning microscopy with planar or structured illumination. Nature Methods, 8, 811–819.Google Scholar
  49. Mertz J., and Kim, J. (2010). Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection. Journal of Biomedical Optics, 15, 016027.Google Scholar
  50. Neil, M.A., Juškaitis, R., and Wilson, T. (1997). Method of obtaining optical sectioning by using structured light in a conventional microscope. Optics Letters, 22, 1905–1907.Google Scholar
  51. Olarte, O. E., Andilla, J., Gualda, E. J., and Loza-Alvarez, P. (2018). Light-sheet microscopy: A tutorial. Advances in Optics and Photonics, 10, 111–179.  https://doi.org/10.1364/AOP.10.000111 (Accessed April 3, 2019).
  52. Olarte, O. E., Licea-Rodriguez, J., Palero, J. A., Gualda, E. J., Artigas, D., Mayer, J., Swoger, J., Sharpe, J., Rocha-Mendoza, I., Rangel-Rojo, R., and Loza-Alvarez, P. (2012). Image formation by linear and nonlinear digital scanned light-sheet fluorescence microscopy with Gaussian and Bessel beam profiles. Biomedical Optics Express, 3, 1492–1505.Google Scholar
  53. Pitrone P. G., Schindelin J., Stuyvenberg L., Preibisch S., Weber M., Eliceiri K. W., Huisken J., and Tomancak, P. (2013). Nature Methods, 10, 598–599.Google Scholar
  54. Planchon, T. A., Gao, L., Milkie, D. E., Davidson, M. W., Galbraith, J. A., Galbraith, C. G., and Betzig, E. (2011). Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nature Methods, 8, 417–423.Google Scholar
  55. Reynaud, E. G., Kržič, U., Greger, K., and Stelzer, E. H. K. (2008). light-sheet-based fluorescence microscopy: More dimensions, more photons, and less photodamage. HFSP Journal, 2, 266–275.Google Scholar
  56. Reynaud, E. G., Peychl, J., Huisken, J., and Tomancak, P. (2015). Guide to light-sheet microscopy for adventurous biologists. Nature Methods, 12, 30–34.Google Scholar
  57. Royer, L. A., Lemon, W. C., Chhetri, R. K., Wan, Y., Coleman, M., Myers, E. W., and Keller, P. J. (2016). Adaptive light-sheet microscopy for long-term, high resolution imaging in living organisms. Nature Biotechnology, 34, 1267–1278.Google Scholar
  58. Santi, P. A., Johnson, S. B., Hillenbrand, M., GrandPre, P. Z., Glass, T. J., and Leger, J. R. (2009). Thin-sheet laser imaging microscopy for optical sectioning of thick tissues. BioTechniques, 46, 287–294.Google Scholar
  59. Schmid, B., Shah, G., Scherf, N., Weber, M., Thierbach, K., Campos, C. P., Roeder, I., Aanstad, P., and Huisken, J. (2013). High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics. Nature Communications, 4, 1–10.Google Scholar
  60. Sharpe, J. (2004). Optical Projection Tomography. Annual Review of Biomedical Engineering, 6, 209–228.Google Scholar
  61. Sharpe, J. (2008). In vitro whole-organ imaging: 4D quantification of growing mouse limb buds. Nature Methods, 5, 609–612.Google Scholar
  62. Sharpe, J., Ahlgren, U., Perry, P., Hill, B., Ross, A., Hecksher-Sørensen, J., Baldock, R., and Davidson, D. (2002). Optical projection tomography as a tool for three-dimensional microscopy and gene expression studies. Science, 296, 541–545.Google Scholar
  63. Siedentopf, H., and Zsigmondy, R. (1903). Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser (About visualization and size determination of ultramicroscopic particles, with particular application to gold red glasses). Annalen der Physik, 10, 1–39.Google Scholar
  64. Simon, W. (1965). Photomicrography of deep fields. Review of Scientific Instruments, 36, 1654–1655.Google Scholar
  65. Siviloglou, G. A., Broky, J., Dogariu, A., and Christodoulides, D. N. (2007). Observation of accelerating Airy Beams. Physical Review Letters, 99, 213901-1–213901-4.Google Scholar
  66. Siviloglou, G. A., Broky, J., Dogariu, A., and Christodoulides, D. N. (2008). Ballistic dynamics of Airy beams. Optics Letters, 33, 207–209.Google Scholar
  67. Spalteholtz, W. (1911). Über das Durchsichtigmachen von Menschlichenund Tierischen Präparaten (On making transparent human and animal tissue samples). Leipzig: Verlag S. Hirzel.Google Scholar
  68. Stelzer, E. H. K., Lindek, S., Albrecht, S., Pick, R., Ritter, G., Salmon, N. J., and Stricker, R. (1995). A new tool for the observation of embryos and other large specimens: Confocal theta fluorescence microscopy. Journal of Microscopy, 179(1), 1–10.Google Scholar
  69. Swoger, J, Verveer, P, Greger, K, Huisken, J., and Stelzer, E. H. K. (2007). Multi-view image fusion improves resolution in three-dimensional microscopy. Optics Express, 15, 8029–8042.Google Scholar
  70. Sztul, H. I., and Alfano, R. R. (2008). The Poynting vector and angular momentum of Airy beams. Optics Express, 16, 9411–9416.Google Scholar
  71. Tillberg, P.W., Chen, F., Piatkevich, K. D., Zhao, Y., Yu, C. C., English, B. P., Gao, L., Martorell, A., Suk, H-J., Yoshida, F., DeGennaro, E. M., Roossien, D. H., Gong, G., Seneviratne, U., Tannenbaum, S. R., Desimone, R., Cai, D., and Boyden, E. S. (2016). Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nature Biotechnology, 34, 987–992.  https://doi.org/10.1038/nbt.3625; pmid: 27376584 (Accessed April 3, 2019).
  72. Tomer, R., Khairy, K. Amat, F., and Keller, P. J. (2012). Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nature Methods, 9, 755–763.Google Scholar
  73. Vettenburg, T., Dalgarno, H. I. C., Nylk, J., Coll-Lladó, C., Ferrier, D. E. K., Čižmár, T., Gunn-Moore, F. J., and Dholakia, K. (2014). Light-sheet microscopy using an Airy beam. Nature Methods, 11, 541–544.Google Scholar
  74. Voie, A. H. (1996). Three-dimensional reconstruction and quantitative analysis of the mammalian cochlea [dissertation]. Seattle (WA), University of Washington.Google Scholar
  75. Voie, A. H., Burns, D. H., and Spelman, F. A. (1993). Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. Journal of Microscopy, 170, 229–236.Google Scholar
  76. Voie, A. H., and Spelman, F. A. (1995). Three-dimensional reconstruction of the cochlea from two dimensional images of optical sections. Computerized Medical Imaging and Graphics, 19, 377–384.Google Scholar
  77. Voie, A. H. (2002). Imaging the intact guinea pig tympanic bulla by orthogonal-plane fluorescence optical sectioning microscopy. Hearing Research, 171, 119–128.Google Scholar
  78. Wang, K., Milkie, D. E., Saxena, A., Engerer, P., Misgeld, T., Bronner, M. E., Mumm, J., and Eric Betzig, E. (2014). Rapid adaptive optical recovery of optimal resolution over large volumes. Nature Methods, 11, 625–628.Google Scholar
  79. Wu, Y., Ghitani, A., Christensen, R., Santella, A., Du, Z., Rondeau, G., Bao, Z., Colón-Ramos, D., and Shroff, H. (2011). Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 108, 17708–17713.Google Scholar
  80. Wu, Y., Christensen, R., Colón-Ramos, D., and Shroff, H. (2013). Advanced optical imaging techniques for neurodevelopment. Current Opinion in Neurobiology, 23, 1090–1097.Google Scholar
  81. Wu, Y., Chandris, P., Winter, P. W., Kim, E. Y., Jaumouillé, V., Kumar, A., Guo, M., Leung, J. M., Smith, C., Rey-Suarez, I., Liu, H., Waterman, C. M., Ramamurthi, K. S., La Riviere, P. J., and Shroff, H. (2016). Simultaneous multiview capture and fusion improves spatial resolution in wide-field and light-sheet microscopy. Optica, 3, 897–910.Google Scholar
  82. Yang, Z., Prokopas, M., Nylk, J., Coll-Lladó, C., Gunn-Moore, F. J., Ferrier, D. E. K., Vettenburg, T., and Kishan, D. (2014). A compact Airy beam light-sheet microscope with a tilted cylindrical lens. Biomedical Optics Express, 5, 3434–3442.Google Scholar
  83. Zampol, P. (1960). Method of Photography. US Patent 2928734 A.Google Scholar

Further Reading

  1. Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M., and Keller, P. J. (2013). Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nature Methods, 10, 413–420.Google Scholar
  2. Booth, M. J. (2007). Adaptive optics in microscopy. Philosophical Transactions of the Royal Society A, 365, 2829–2843.Google Scholar
  3. Bouchard, M. B., Voleti, V., Mendes, C. S., Lacefield, C., Grueber, W. B., Mann, R. S., Bruno, R. M., and Hillman, E. M. C. (2015). Swept confocally-aligned planar excitation (SCAPE) microscopy for high-speed volumetric imaging of behaving organisms. Nature Photonics, 9, 113–119.Google Scholar
  4. Breuninger, T., Greger, K., and Stelzer E. H. K. (2007). Lateral modulation boosts image quality in single plane illumination fluorescence microscopy. Optics Letters, 32, 1938–1940.Google Scholar
  5. Dean, K. M., Roudot, P., Welf, E. S., Danuser, G., and Fiolka, R. (2015). Deconvolution-free subcellular imaging with axially swept light-sheet microscopy. Biophysical Journal, 108, 2807–2815.Google Scholar
  6. Denk, W., Strickler, J. H., and Webb, W. W. (1990). Two-photon laser scanning fluorescence microscopy. Science, 248, 73–76.Google Scholar
  7. Engelbrecht, C. J., and Stelzer, E. H. K. (2006). Resolution enhancement in a light-sheet-based microscope (SPIM). Optics Letters, 31, 1477–1479.Google Scholar
  8. Fahrbach, F. O., Voigt, F. F., Schmid, B., Helmchen, F., and Huisken, J. (2013). Rapid three-dimensional light-sheet microscopy with a tunable lens. Optics Express, 21, 21010–21026.Google Scholar
  9. Greenberger, D. M. (1980). Comment on “non-spreading wave packets.” American Journal of Physics, 48, 256.Google Scholar
  10. Gualda, E. J., Simão, D., Pinto, C., Alves, P. M., and Brito, C. (2014). Imaging of human differentiated three-dimensional neural aggregates using light-sheet fluorescence microscopy. Frontiers in Cellular Neuroscience, 6. http://journal.frontiersin.org/article/10.3389/fncel.2014.00221/abstract (Accessed: April 3, 2019).  https://doi.org/10.3389/fncel.2014.00221.
  11. Gustafsson, M. G. L. (2000). Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy, 198, 82–87.Google Scholar
  12. Gustafsson, M. G. L., Shao, L., Carlton, P. M., Wang, C. J. R., Golubovskaya, I. N., Cande, W. Z., Agard, D. A., and Sedat, J. W. (2008). Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophysical Journal, 94, 4957–4970.Google Scholar
  13. Helmchen, F., and Denk, W. (2005). Deep tissue two-photon microscopy. Nature Methods, 2, 932–940.Google Scholar
  14. Kamei, M., and Weinstein, B. M. (2005). Long-term time-lapse fluorescence imaging of developing zebrafish. Zebrafish, 2, 113–123.Google Scholar
  15. Keller, P. J., Schmidt, A. D., Wittbrodt, J., and Stelzer, E. H. K. (2008). Reconstruction of zebrafish early embryonic development by scanned light-sheet microscopy. Science, 322, 1065–1069.Google Scholar
  16. Konopka, C. A., and Bednarek, S. Y. (2008). Variable-angle epifluorescence microscopy: A new way to look at protein dynamics in the plant cell cortex. Plant Journal, 53, 186–196.Google Scholar
  17. Kumar, S., Wilding, D., Sikkel, M. B., Lyon, A. R., MacLeod, K. T., and Dunsby, C. (2011). High-speed two-dimensional and three-dimensional fluorescence microscopy of cardiac myocytes. Optics Express, 19, 13839–13847.Google Scholar
  18. Lim, J., Lee, H. K., Yu, W., and Ahmed, S. (2014). light-sheet fluorescence microscopy (LSFM): Past, present and future. Analyst, 139, 4758–4768.Google Scholar
  19. Lindek, S., Salmon, N., Cremer, C., and Stelzer, E. H. K. (1994). Theta microscopy allows phase regulation in 4Pi(A)-confocal two-photon fluorescence microscopy. Optik, 98, 15–20.Google Scholar
  20. Lindek, S., Cremer, C., and Stelzer, E. H. K. (1996). Confocal theta fluorescence microscopy with annular apertures. Applied Optics, 35, 126–130.Google Scholar
  21. Mahou, P., Zimmerley, M., Loulier, K., Matho, K. S., Labroille, G., Morin, X., Supatto, W., Livet, J., Débarre, D., and Beaurepaire, E. (2012). Multicolor two-photon tissue imaging by wavelength mixing. Nature Methods, 9, 815–818.Google Scholar
  22. Mahou, P., Vermot, J., Beaurepaire, E., and Supatto, W. (2014). Multicolor two-photon light-sheet microscopy. Nature Methods, 11, 600–601.Google Scholar
  23. Overfelt, P. L., and Kenney, C. S. (1991). Comparison of the propagation characteristics of Bessel, Bessel-Gauss, and Gaussian beams diffracted by a circular aperture. Journal of the Optical Society of America A, 8, 732–745.Google Scholar
  24. Palero, J., Santos, S. I. C. O., Artigas, D., and Loza-Alvarez, P. (2010). A simple scanless two-photon fluorescence microscope using selective plane illumination. Optics Express, 18, 8491–8498.Google Scholar
  25. Pan, C., Cai, R., Quacquarelli, F. P., Ghasemigharagoz, A., Lourbopoulos, A., Matryba, P., Plesnila, N., Dichgans, M., Hellal, F., and Ertürk A. (2016). Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nature Methods. Received 1 March; accepted 26 July; published online 22 August 2016;  https://doi.org/10.1038/nmeth.3964.
  26. Ritter, J. G., Veith, R., Siebrasse, J.-P., and Kubitscheck, U. (2008). High contrast single-particle tracking by selective focal plane illumination microscopy. Optics Express, 16, 7142–7152.Google Scholar
  27. Santi, P. A. (2011). light-sheet fluorescence microscopy: A review. Journal of Histochemistry & Cytochemistry, 59, 129–138.Google Scholar
  28. Siedentopf, H. (1903). IX. On the rendering visible of ultra-microscopic particles and of ultra-microscopic bacteria. Journal of the Royal Microscopical Society, 23, 573–578.Google Scholar
  29. Shroff, H. (2016). Simultaneous multi-view capture and fusion improves spatial resolution in wide-field and light-sheet microscopy. Optica, 3, 897–910.Google Scholar
  30. Silvestri, L., Bria, A., Sacconi, L., Iannello, G., and Pavone, F. S. (2012). Confocal light-sheet microscopy: Micron-scale neuroanatomy of the entire mouse brain. Optics Express, 20, 20582–20598.Google Scholar
  31. Siviloglou, G. A., and Christodoulides, D. N. (2007). Accelerating finite energy Airy beams. Optics Letters, 32, 979–981.Google Scholar
  32. Stelzer, E. H. K. (2015). Light-sheet fluorescence microscopy for quantitative biology. Nature Methods, 12, 23–26.Google Scholar
  33. Stelzer, E. H. K., and Lindek, S. (1994). Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: Confocal theta microscopy. Optics Communications, 111, 536–547.Google Scholar
  34. Stelzer, E. H. K., Hell, S.W., Lindek, S., Stricker, R., Pick, R., Storz, C., Ritter, G., and Salmon, N. (1994). Nonlinear absorption extends confocal fluorescence microscopy into the ultraviolet regime and confines the observation volume. Optics Communications, 104, 223–228.Google Scholar
  35. Swoger, J, Huisken, J, and Stelzer, E. H. (2003). Multiple imaging axis microscopy improves resolution for thick-sample applications. Optics Letters, 28, 1654–1656.Google Scholar
  36. Tokunaga, M., Imamoto, N., and Sakata-Sogawa, K. (2008). Highly inclined thin illumination enables clear single-molecule imaging in cells. Nature Methods, 5, 159–161.Google Scholar
  37. Truong, T. V., Supatto, W., Koos, D. S., Choi, J. M., and Fraser, S. E. (2011). Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nature Methods, 8, 757–760.Google Scholar
  38. Vaziri, A., and Shank, C. V. (2010). Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing. Optics Express, 18, 19645–19655.Google Scholar
  39. Zanacchi, F. C., Lavagnino, Z., Donnorso, M. P., Bue, A. D. Furia, L., Faretta, M., and Diaspro, A. (2011). Live-cell three-dimensional super-resolution imaging in thick biological samples. Nature Methods, 8, 1047–1049.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Previously, Visiting Scientist Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Previously, Visiting Scholar Department of the History of ScienceHarvard UniversityCambridgeUSA

Personalised recommendations