Advances in Functional Genomics in Investigating Salinity Tolerance in Plants

  • Joydeep Banerjee
  • Arpita Das
  • Maryam Vahedi
  • Saikat Gantait


Soil salinity has diverse effects on the morphological, physiological, and biochemical characteristics of plants, which results in reduction in yield. Excessive salt exposure induces morphological and anatomical changes that include a reduction in the dry weight of leaves and roots, root length, root volume, average root diameter, chlorophyll and net photosynthesis, and stomatal conductance. A number of genes were found to be involved in salt tolerance across diverse plant genera. Through functional genomics, transcriptomics, and proteomics approaches the functional significance of some of the major genes has been discovered that play pivotal role in salt tolerance of plants. A number of transgenic approaches have been taken to over-express genes involved in salt-tolerant mechanisms and in addition to that down-regulation of some important genes in transgenic plants also demonstrated salt tolerance. Recently, due to the advancement of genomics, several genomic information are available in public database and furthermore, transcriptomics studies identified several genes directly or indirectly involved in salt tolerance. This chapter specifically describes the over-expression or down-regulation of different candidate genes for mitigating salt tolerance in plants. Along with different functional genomics strategies, how recent researches on microRNA (miRNA) revealed a new field in understanding as well as combating salt stress, have been discussed in this chapter. More recently, another concept has come in the biotechnological research area where a plant genome can be edited in a target-oriented manner. This chapter also summarizes how genome editing is helpful in controlling the detrimental effects of salt stress.


Gene-silencing Genome editing miRNA Over-expression Salt stress 



Authors acknowledge the library assistance from the Bidhan Chandra Krishi Viswavidyalaya, Mohanpur and Indian Institute of Technology Kharagpur, West Bengal, India. We further are thankful to the reviewer(s)/editor(s) of this chapter for their comments and suggestions on the manuscript.


  1. AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W (2016) High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front Plant Sci 7:276PubMedPubMedCentralGoogle Scholar
  2. Al-Taweel K, Iwaki T, Yabuta Y, Shigeoka S, Murata N, Wadano A (2007) A bacterial transgene for catalase protects translation of D1 protein during exposure of salt-stressed tobacco leaves to strong light. Plant Physiol 145:258–265PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ali Y, Aslam Z, Ashraf MY, Tahir GR (2004) Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. Int J Environ Sci Technol 1:221–225CrossRefGoogle Scholar
  4. Almansouri M, Kinet JM, Lutts S (2001) Effect of salt and osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant Soil 231:243–254CrossRefGoogle Scholar
  5. Apse MP, Aharon GS, Snedden WS, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258PubMedCrossRefGoogle Scholar
  6. Banerjee J, Gantait S, Maiti MK (2017) Physiological role of rice germin-like protein 1 (OsGLP1) at early stages of growth and development in indica rice cultivar under salt stress condition. Plant Cell Tiss Org Cult 131:127–137CrossRefGoogle Scholar
  7. Banu MNA, Hoque MA, Watanabe-Sugimoto M, Matsuoka K, Nakamura Y, Shimoishi Y, Murata Y (2009) Proline and glycinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. J Plant Physiol 166:146–156PubMedCrossRefGoogle Scholar
  8. Barman AR, Banerjee J (2015) Versatility of germin-like proteins in their sequences, expressions, and functions. Funct Integr Genomics 15:533–548PubMedCrossRefGoogle Scholar
  9. Bhardwaj R, Sharma I, Kanwar M, Sharma R, Handa N, Kaur H, Kapoor D, Poonam RB (2013) LEA proteins in salt stress tolerance. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants. Springer, New York, pp 79–112CrossRefGoogle Scholar
  10. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434PubMedCrossRefGoogle Scholar
  11. Bottino MC, Rosario S, Grativol C, Thiebaut F, Rojas CA, Farrineli L, Hemerly AS, Ferreira PCG (2013) High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. PLoS One 8:e59423CrossRefGoogle Scholar
  12. Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pagès M, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26:2017–2026PubMedCrossRefGoogle Scholar
  13. Cao YR, Chen SY, Zhang JS (2008) Ethylene signaling regulates salt stress response: an overview. Plant Signal Behav 3:761–763PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560PubMedCrossRefGoogle Scholar
  15. Chen L, Wang T, Zhao M, Tian Q, Zhang WH (2012) Identification of aluminum-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. Planta 235:375–386PubMedCrossRefGoogle Scholar
  16. Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448CrossRefGoogle Scholar
  17. Cicek N, Cakirlar H (2002) The effect of salinity on some physiological parameters in two maize cultivars. Bulg J Plant Physiol 28:66–74Google Scholar
  18. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cong L, Zheng H-C, Zhang Y-X, Chai T-Y (2008) Arabidopsis DREB1A confers high salinity tolerance and regulates the expression of GA dioxygenases in Tobacco. Plant Sci 174:156–164CrossRefGoogle Scholar
  20. Daszkowska-Golec A, Wojnar W, Rosikiewicz M, Szarejko I, Maluszynski M, Szweykowska-Kulinska Z, Jarmolowski A (2013) Arabidopsis suppressor mutant of abh1 shows a new face of the already known players: ABH1 (CBP80) and ABI4-in response to ABA and abiotic stresses during seed germination. Plant Mol Biol 81:189–209PubMedCrossRefGoogle Scholar
  21. De Costa W, Zorb C, Hautung W, Schubert S (2007) Salt resistance is determined by osmotic adjustment and abscisic acid in newly developed maize hybrids in the first phase of salt stress. Physiol Plant 131:311–321PubMedGoogle Scholar
  22. Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379PubMedPubMedCentralCrossRefGoogle Scholar
  23. Deshnium P, Los DA, Hayashi H, Mustardy L, Murata N (1995) Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress. Plant Mol Biol 29:897–907PubMedCrossRefGoogle Scholar
  24. Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38PubMedCrossRefGoogle Scholar
  25. Dolata J, Bajczyk M, Bielewicz D, Niedojadlo K, Niedojadlo J, Pietrykowska H, Walczak W, Szweykowska-Kulinska Z, Jarmolowski A (2016) Salt stress reveals a new role for ARGONAUTE1 in miRNA biogenesis at the transcriptional and posttranscriptional levels. Plant Physiol 172:297–312PubMedPubMedCentralCrossRefGoogle Scholar
  26. Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225:1255–1264PubMedCrossRefGoogle Scholar
  27. Evers D, Overney S, Simon P, Greppin H, Hausman JF (1999) Salt tolerance of Solanum tuberosum L overexpressing an heterologous osmotin-like protein. Biol Plant 42:105–112CrossRefGoogle Scholar
  28. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2:e219PubMedPubMedCentralCrossRefGoogle Scholar
  29. Frazier TP, Sun G, Burklew CE, Zhang B (2011) Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Mol Biotechnol 49:159–165PubMedCrossRefGoogle Scholar
  30. Gao J, Lan T (2016) Functional characterization of the late embryogenesis abundant (LEA) protein gene family from Pinus tabuliformis (Pinaceae) in Escherichia coli. Sci Rep 6:19467PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gao M, Tao R, Miura K, Dandekar AM, Sugiura A (2001) Transformation of Japanese persimmon (Diospyros kaki Thunb.) with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Sci 160:837–845PubMedCrossRefPubMedCentralGoogle Scholar
  32. Gao P, Bai X, Yang L, Lv D, Li Y, Cai H, Ji W, Guo D, Zhu Y (2010) Over-expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta 231:991–1001PubMedCrossRefGoogle Scholar
  33. Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99:15898–15903PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ge LF, Chao DY, Shi M, Zhu MZ, Gao JP, Lin HX (2008) Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228:191–201PubMedCrossRefGoogle Scholar
  35. Gharsallah C, Fakhfakh H, Grubb D, Gorsane F (2016) Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants 8:plw055PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA, Torres SE, Stern-Ginossar N, Brandman O, Whitehead EH, Doudna JA, Lim WA (2013) CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:442–451PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O’Connor-Giles KM (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194:1029–1035PubMedPubMedCentralCrossRefGoogle Scholar
  38. Han KH, Hwang CH (2003) Salt tolerance enhanced by transformation of a P5CS gene in carrot. J Plant Biotechnol 5:149–153Google Scholar
  39. Han X, Feng Z, Xing D, Yang Q, Wang R, Qi L, Li G (2015) Two NAC transcription factors from Caragana intermedia altered salt tolerance of the transgenic Arabidopsis. BMC Plant Biol 15:208PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33:552–565PubMedCrossRefPubMedCentralGoogle Scholar
  41. Hayashi H, Alia Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycinebetaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142PubMedCrossRefGoogle Scholar
  42. Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savouré A, Jaoua S (2005) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169:746–752CrossRefGoogle Scholar
  43. Hong Y, Zhang H, Huang L, Li D, Song F (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:4PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hong Z, Lakkineni K, Zhang K, Verma DPS (2000) Removal of feedback inhibition of D1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hu HH, You J, Fang YJ, Zhu XY, Qi ZY, Xiong LZ (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hugouvieux V, Kwak JM, Schroeder JI (2001) An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106:477–487PubMedCrossRefPubMedCentralGoogle Scholar
  47. Jagadeeswaran G, Zheng Y, Sumathipala N, Jiang H, Arrese EL, Soulages JL, Zhang W, Sunkar R (2010) Deep sequencing of small RNA libraries reveals dynamic regulation of conserved and novel microRNAs and microRNA-stars during silkworm development. BMC Genomics 11:52PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286PubMedCrossRefGoogle Scholar
  49. Jiang Q, Hu Z, Zhang H, Ma Y (2014) Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity. Crop J 2:120–131CrossRefGoogle Scholar
  50. Jiang W, Zhou H, Honghao B, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jing J, Li H, He G, Yin Y, Liu M, Liu B, Qiao G, Lin S, Xie L, Zhuo R (2013) Over-expression of the codA gene by Rd29A promoter improves salt tolerance in Nicotiana tabacum. Pak J Bot 45:821–827Google Scholar
  52. Kaya C, Tuna AL, Yokaş I (2009) The role of plant hormones in plants under salinity stress. In: Salinity and water stress. Springer, Dordrecht, pp 45–50CrossRefGoogle Scholar
  53. Kaymakanova M (2009) Effect of salinity on germination and seed physiology in bean (Phaseolus vulgaris L.). Biotechnol Biotechnol Equip 23:326–329CrossRefGoogle Scholar
  54. Khan MS, Ahmada D, Khan MA (2015) Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electron J Biotechnol 18:257–266CrossRefGoogle Scholar
  55. Kishor KPB, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of D1-pyrroline-5-carboxylate synthetase increase proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kmieciak M, Simpson CG, Lewandowska D, Brown JW, Jarmolowski A (2002) Cloning and characterization of two subunits of Arabidopsis thaliana nuclear cap-binding complex. Gene 283:171–183PubMedCrossRefPubMedCentralGoogle Scholar
  57. Kong Y, Elling A, Chen B, Deng X (2010) Differential expression of microRNAs in maize inbred and hybrid lines during salt and drought stress. Am J Plant Sci 1:69–76CrossRefGoogle Scholar
  58. Kosová K, Prášil IT, Vítámvás P (2013) Protein contribution to plant salinity response and tolerance acquisition. Int J Mol Sci 14:6757–6789PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep-sequencing data. Nucleic Acids Res 42:D68–D73PubMedCrossRefGoogle Scholar
  60. Lai EC, Tomancak P, Williams RW, Rubin GM (2003) Computational identification of Drosophila microRNA genes. Genome Biol 4:R42PubMedPubMedCentralCrossRefGoogle Scholar
  61. Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018PubMedCrossRefPubMedCentralGoogle Scholar
  62. Li S, Liu L, Zhuang X, Yu Y, Liu X, Cui X, Ji L, Pan Z, Cao X, Mo B, Zhang F, Raikhel N (2013) MicroRNAs inhibit the translation of target mRNAs on the endoplasmic reticulum in Arabidopsis. Cell 153:562–574PubMedPubMedCentralCrossRefGoogle Scholar
  63. Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843PubMedPubMedCentralCrossRefGoogle Scholar
  64. Llave C, Kasschau KD, Rector MA, Carrington JC (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619PubMedPubMedCentralCrossRefGoogle Scholar
  65. Majee M, Maitra S, Ghosh Dastidar K, Pattnaik S, Chatterjee A, Hait N, Das KP, Majumder AL (2004) A novel salt-tolerant l-myo-inositol 1-phosphate synthase from Porteresia coarctata Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization and functional introgression into tobacco conferring salt-tolerance phenotype. J Biol Chem 279:28539–28552PubMedCrossRefGoogle Scholar
  66. Mangrauthia SK, Agarwal S, Sailaja B, Madhav MS, Voleti SR (2013) MicroRNAs and their role in salt stress response in plants. In: Salt stress in plants. Springer, New York, pp 15–46CrossRefGoogle Scholar
  67. Mian A, Oomen RJ, Isayenkov S, Sentenac H, Maathuis FJ, Véry AA (2011) Over-expression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance. Plant J 68:468–479PubMedCrossRefPubMedCentralGoogle Scholar
  68. Mirlohi S, He Y (2016) Small RNAs in plant response to abiotic stress. In: Shankar AK, Shankar C (eds) Biotic and biotic stress in plants - recent advances and future perspectives. Intech, Croatia, pp 63–80Google Scholar
  69. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681CrossRefGoogle Scholar
  70. Naing AH, Park KI, Ai TN, Chung MY, Han JS, Kang YW, Lim KB, Kim CK (2017) Overexpression of snapdragon Delila (Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance. BMC Plant Biol 17:65PubMedPubMedCentralCrossRefGoogle Scholar
  71. Nanjo T, Kobayashia M, Yoshibab Y, Kakubaric Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210PubMedCrossRefGoogle Scholar
  72. Nomura M, Ishitani M, Takabe T, Tai AK, Takabe T (1995) Synechococcus sp. PCC 7942 transformed with Escherichia coli bet genes produces glycine betaine from choline and acquires resistance to salt stress. Plant Physiol 107:703–708PubMedPubMedCentralCrossRefGoogle Scholar
  73. Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263PubMedCrossRefGoogle Scholar
  74. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324–349PubMedCrossRefGoogle Scholar
  75. Paul S, Kundu A, Pal A (2011) Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress. Plant Cell Tiss Org Cult 105:233–242CrossRefGoogle Scholar
  76. Pons R, Cornejo MJ, Sanz A (2013) Is ABA involved in tolerance responses to salinity by affecting cytoplasm ion homeostasis in rice cell lines? Plant Physiol Biochem 62:88–94PubMedCrossRefGoogle Scholar
  77. Qin Y, Duan Z, Xia X, Yin W (2011) Expression profiles of precursor and mature microRNAs under dehydration and high salinity shock in Populus euphratica. Plant Cell Rep 30:1893–1907PubMedCrossRefGoogle Scholar
  78. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425PubMedPubMedCentralCrossRefGoogle Scholar
  79. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–2166PubMedPubMedCentralCrossRefGoogle Scholar
  80. Roberts JK, DeSimone NA, Lingle WL, Dure L III (1993) Cellular concentrations and uniformity of cell-type accumulation of two lea proteins in cotton embryos. Plant Cell 5:769–780PubMedPubMedCentralCrossRefGoogle Scholar
  81. Rosewick N, Momont M, Durkin K, Takeda H, Caiment F, Cleuter Y, Vernin C, Mortreux F, Wattel E, Burny A, Georges M, Van den Broeke A (2013) Deep sequencing reveals abundant noncanonical retroviral microRNAs in B-cell leukemia/lymphoma. Proc Natl Acad Sci U S A 110:2306–2311PubMedPubMedCentralCrossRefGoogle Scholar
  82. Roxas VP, Smith RK Jr, Allen ER, Allen RD (1997) Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol 15:988–991PubMedCrossRefGoogle Scholar
  83. Roy S (2016) Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signal Behav 11:e1117723PubMedCrossRefGoogle Scholar
  84. Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124PubMedCrossRefGoogle Scholar
  85. Sakamoto A, Murata N (2001) The use of bacterial choline oxidase, a glycinebetaine-synthesizing enzyme, to create stress resistant transgenic plants. Plant Physiol 125:180–188PubMedPubMedCentralCrossRefGoogle Scholar
  86. Sandhu D, Cornacchione MV, Ferreira JF, Suarez DL (2017) Variable salinity responses of 12 alfalfa genotypes and comparative expression analyses of salt-response genes. Sci Rep 7:42958PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sathee L, Sairam RK, Chinnusamy V, Jha SK (2015) Differential transcript abundance of salt overly sensitive (SOS) pathway genes is a determinant of salinity stress tolerance of wheat. Acta Physiol Plant 37:169CrossRefGoogle Scholar
  88. Sawahel WA, Hassan AH (2002) Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol Lett 24:721–725CrossRefGoogle Scholar
  89. Schaeffer SM, Nakata PA (2015) CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field. Plant Sci 240:130–142PubMedCrossRefGoogle Scholar
  90. Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80:1139–1150PubMedCrossRefGoogle Scholar
  91. Su J, Hirji R, Zhang L, He C, Selvaraj G, Wu R (2006) Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stressprotectant glycine betaine. J Exp Bot 57:1129–1135PubMedCrossRefGoogle Scholar
  92. Sudhir P, Murthy SDS (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486CrossRefGoogle Scholar
  93. Sun G, Stewart CN, Xiao P, Zhang B (2012) MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress. PLoS One 7:e32017PubMedPubMedCentralCrossRefGoogle Scholar
  94. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019PubMedPubMedCentralCrossRefGoogle Scholar
  95. Takeuchi K, Takeuchi K, Hasegawa H, Gyohda A, Komatsu S, Okamoto T, Okada K, Terakawa T, Koshiba T (2016) Overexpression of RSOsPR10, a root-specific rice PR10 gene, confers tolerance against drought stress in rice and drought and salt stresses in bentgrass. Plant Cell Tiss Org Cult 127:35–46CrossRefGoogle Scholar
  96. Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259:508–510PubMedCrossRefGoogle Scholar
  97. Tavakkoli E, Fatehi F, Coventry S, Rengasamy P, McDonald GK (2011) Additive effects of Na+ and Cl ions on barley growth under salinity stress. J Exp Bot 62:2189–2203PubMedPubMedCentralCrossRefGoogle Scholar
  98. Tavakkoli E, Rengasamy P, McDonald GK (2010) High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J Exp Bot 61:4449–4459PubMedPubMedCentralCrossRefGoogle Scholar
  99. Trachootham D, Lu W, Ogasawara MA, Valle NRD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–1374PubMedPubMedCentralCrossRefGoogle Scholar
  100. Turhan H (2005) Salinity response of transgenic potato genotypes expressing the oxalate oxidase gene. Turk J Agric For 29:187–195Google Scholar
  101. Uddin MN, Hossain MA, Burritt DJ (2016) Salinity and drought stress: similarities and differences in oxidative responses and cellular redox regulation. In: Ahmad P (ed) Water stress and crop plants: a sustainable approach, vol 1. Wiley, Chichester, UK, pp 86–101CrossRefGoogle Scholar
  102. Wang B, Sun YF, Song N, Wei JP, Wang XJ, Feng H, Yin ZY, Kang ZS (2014) MicroRNAs involving in cold, wounding and salt stresses in Triticum aestivum L. Plant Physiol Biochem 80:90–96PubMedCrossRefGoogle Scholar
  103. Wang J, Zhu J, Zhang Y, Fan F, Li W, Wang F, Zhong W, Wang C, Yang J (2018) Comparative transcriptome analysis reveals molecular response to salinity stress of salt-tolerant and sensitive genotypes of indica rice at seedling stage. Sci Rep 8:2085PubMedPubMedCentralCrossRefGoogle Scholar
  104. Wang X, Fan P, Song H, Chen X, Li X, Li Y (2009) Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. J Proteome Res 8:3331–3345PubMedCrossRefGoogle Scholar
  105. Wu SJ, Ding L, Zhu JK (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8:617–627PubMedPubMedCentralCrossRefGoogle Scholar
  106. Xie F, Wang Q, Sun R, Zhang B (2014) Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot 66:789–804PubMedPubMedCentralCrossRefGoogle Scholar
  107. Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One 9:e92913PubMedPubMedCentralCrossRefGoogle Scholar
  108. Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant protein gene HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257PubMedPubMedCentralCrossRefGoogle Scholar
  109. Yan N, Marschner P, Cao W, Zuo C, Qin W (2015) Influence of salinity and water content on soil microorganisms. Int Soil Water Conserv Res 3:316–323CrossRefGoogle Scholar
  110. Yancey PH (1994) Compatible and counteracting solutes. In: Strange SK (ed) Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton, FL, pp 81–109Google Scholar
  111. Yang A, Xiaoyan DX, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63:2541–2556PubMedPubMedCentralCrossRefGoogle Scholar
  112. Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66:73–86PubMedCrossRefGoogle Scholar
  113. Yang Y, Tang R-J, Jiang C-M, Li B, Kang T, Liu H, Zhao N, Ma X-J, Yang L, Chen S-L, Zhang H-X (2015) Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants. Plant Biotechnol J 13:962–973PubMedCrossRefGoogle Scholar
  114. Yu X, Liang C, Chen J, Qi X, Liu Y, Li W (2015) The effects of salinity stress on morphological characteristics, mineral nutrient accumulation and essential oil yield and composition in Mentha canadensis L. Sci Hortic 197:579–583CrossRefGoogle Scholar
  115. Yue Y, Zhang M, Zhang J, Duan L, Li Z (2012) SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K(+)/Na(+) ratio. J Plant Physiol 169:255–261PubMedCrossRefGoogle Scholar
  116. Zapata PJ, Serrano M, García-Legaz MF, Pretel MT, Botella MA (2017) Short term effect of salt shock on ethylene and polyamines depends on plant salt sensitivity. Front Plant Sci 8:855PubMedPubMedCentralCrossRefGoogle Scholar
  117. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771PubMedPubMedCentralCrossRefGoogle Scholar
  118. Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768PubMedCrossRefGoogle Scholar
  119. Zhang L, Ma H, Chen T, Pen J, Yu S, Zhao X (2014a) Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS One 9:e112807PubMedPubMedCentralCrossRefGoogle Scholar
  120. Zhang X, Tang W, Liu J, Liu Y (2014b) Co-expression of rice OsP5CS1 and OsP5CS2 genes in transgenic tobacco resulted in elevated proline biosynthesis and enhanced abiotic stress tolerance. Chin J Appl Environ Biol 2014:717–722Google Scholar
  121. Zheng XN, Zhen B, Lu GJ, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379:985–989PubMedCrossRefGoogle Scholar
  122. Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res 42:10903–10914PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zhu B, Su J, Chang M, Verma DPS, Fan YL, Wu R (1998) Overexpression of a Δ1-pyrroline-5-carboxylate synthase gene and analysis of tolerance to water and salt stress in transgenic rice. Plant Sci 139:41–48CrossRefGoogle Scholar
  124. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Agricultural and Food EngineeringIndian Institute of Technology KharagpurKharagpur, Paschim MidnaporeIndia
  2. 2.Department of Genetics and Plant Breeding, Faculty of AgricultureBidhan Chandra Krishi ViswavidyalayaNadiaIndia
  3. 3.Regional Research Sub-Station, New Alluvial ZoneBidhan Chandra Krishi ViswavidyalayaNadiaIndia
  4. 4.Department of Horticultural Science, Faculty of Agricultural Sciences and Engineering, College of Agriculture and Natural ResourcesUniversity of TehranKarajIran
  5. 5.Crop Research UnitBidhan Chandra Krishi ViswavidyalayaNadiaIndia

Personalised recommendations