Micromics: A Novel Approach to Understand the Molecular Mechanisms in Plant Stress Tolerance

  • Prasanth Tej Kumar Jagannadham
  • Senthilkumar K. Muthusamy
  • Parameswaran Chidambaranathan


MicroRNAs (miRNAs) are small endogenous non-coding RNAs with 20–22 nucleotides acts as the regulatory RNA. Since their discovery in model plant Arabidopsis, curiosity in understanding the function of plant miRNAs increased and regulatory role of miRNA are now being understood by researchers. The ability of miRNA to repress or induce the expression of several genes based on homology of few nucleotides has intrigued the scientific community. The detailed study has elucidated the step-wise biogenesis of miRNA across the species. Plants has evolved to respond to various external stimuli just by tinkering the expression of master regulators like transcription factors, miRNAs, etc. These master regulators further regulate the expression of several hundreds of downstream genes. There are several miRNAs has been identified as regulators of expression of various abiotic stresses viz., drought, cold, salt and high temperature and biotic stresses viz., viruses, bacteria, fungi, nematodes and insect pests. Additionally, paradigm shift in terms of sequencing technology and computational approaches led to identification of differentially expressed miRNAs for various stresses in plants. This led to the identification of thousands of miRNAs across the species which in turn helps to understand the molecular mechanisms involved in providing the stress tolerance. The present review discusses the mechanism of miRNA biogenesis, and role of identified miRNAs in regulating stress response in plants. The understanding of molecular mechanism of tolerance mediated through miRNA may help in improving the crop yields during various stresses.


Microomics miRNA Abiotic stress Gene expression Transcription factors 


  1. Aravind J, Rinku S, Pooja B, Shikha M, Kaliyugam S, Mallikarjuna MG, Kumar A, Rao AR, Nepolean T (2017) Identification, characterization, and functional validation of drought-responsive microRNAs in subtropical maize inbreds. Front Plant Sci 8:941PubMedPubMedCentralCrossRefGoogle Scholar
  2. Baldrich P, Kakar K, Siré C, Moreno AB, Berger A, García-Chapa M, López-Moya JJ, Riechmann JL, San Segundo B (2014) Small RNA profiling reveals regulation of Arabidopsis miR168 and heterochromatic siRNA415 in response to fungal elicitors. BMC Genomics 15(1):1083PubMedPubMedCentralCrossRefGoogle Scholar
  3. Balyan S, Kumar M, Mutum RD, Raghuvanshi U, Agarwal P, Mathur S, Raghuvanshi S (2017) Identification of miRNA-mediated drought responsive multi-tiered regulatory network in drought tolerant rice, Nagina 22. Sci Rep 7(1):15446PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barciszewska-Pacak M, Milanowska K, Knop K, Bielewicz D, Nuc P, Plewka P, Pacak AM, Vazquez F, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z (2015) Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses. Front Plant Sci 6:410PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bebber DP, Gurr SJ (2015) Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genet Biol 74:62–64PubMedCrossRefPubMedCentralGoogle Scholar
  6. Ben Chaabane S, Liu R, Chinnusamy V, Kwon Y, Park JH, Kim SY, Zhu JK, Yang SW, Lee BH (2012) STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis. Nucleic Acids Res 41(3):1984–1997PubMedPubMedCentralCrossRefGoogle Scholar
  7. Berens ML, Berry HM, Mine A, Argueso CT, Tsuda K (2017) Evolution of hormone signaling networks in plant defense. Annu Rev Phytopathol 55:401–425PubMedCrossRefPubMedCentralGoogle Scholar
  8. Bologna NG, Mateos JL, Bresso EG, Palatnik JF (2009) A loop-to-base processing mechanism underlies the biogenesis of plant microRNAs miR319 and miR159. EMBO J 28(23):3646–3656PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130(8):1493–1504PubMedCrossRefPubMedCentralGoogle Scholar
  10. Burand JP, Hunter WB (2013) RNAi: future in insect management. J Invertebr Pathol 112:S68–S74PubMedCrossRefPubMedCentralGoogle Scholar
  11. Cabrera J, Barcala M, García A, Rio-Machín A, Medina C, Jaubert-Possamai S, Favery B, Maizel A, Ruiz-Ferrer V, Fenoll C, Escobar C (2016) Differentially expressed small RNAs in Arabidopsis galls formed by Meloidogyne javanica: a functional role for miR390 and its TAS3-derived tasiRNAs. New Phytol 209(4):1625–1640PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cabrera J, Ruiz-Ferrer V, Fenoll C, Escobar C (2018) sRNAs involved in the regulation of plant developmental processes are altered during the root-knot nematode interaction for feeding site formation. Eur J Plant Pathol 152:945–955CrossRefGoogle Scholar
  13. Chen L, Ren Y, Zhang Y, Xu J, Zhang Z, Wang Y (2012) Genome-wide profiling of novel and conserved Populus microRNAs involved in pathogen stress response by deep sequencing. Planta 235(5):873–883PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chen Z, Hu L, Han N, Hu J, Yang Y, Xiang T, Zhang X, Wang L (2014) Overexpression of a miR393-resistant form of transport inhibitor response protein 1 (mTIR1) enhances salt tolerance by increased osmoregulation and Na+ exclusion in Arabidopsis thaliana. Plant Cell Physiol 56(1):73–83PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chi M, Bhagwat B, Lane WD, Tang G, Su Y, Sun R, Oomah BD, Wiersma PA, Xiang Y (2014) Reduced polyphenol oxidase gene expression and enzymatic browning in potato (Solanum tuberosum L.) with artificial microRNAs. BMC Plant Biol 14(1):62PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chinnusamy V, Zhu J-K (2003) Plant salt tolerance. In H Hirt, K Shinozaki Plant responses to abiotic stress. Springer, Berlin, pp 241–270CrossRefGoogle Scholar
  17. Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12(2):133–139PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chinnusamy V, Zhu J, Zhu JK (2006) Salt stress signaling and mechanisms of plant salt tolerance. In: Setlow JK (ed) Genetic engineering. Springer, Boston, MA, pp 141–177CrossRefGoogle Scholar
  19. Chinnusamy V, Zhu JK, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. In: Sunkar R (ed) Plant stress tolerance. Humana Press, Totowa, NJ, pp 39–55CrossRefGoogle Scholar
  20. Clauw P, Coppens F, Korte A, Herman D, Slabbinck B, Dhondt S, Van Daele T, De Milde L, Vermeersch M, Maleux K, Maere S (2016) Leaf growth response to mild drought: natural variation in Arabidopsis sheds light on trait architecture. Plant Cell 28(10):2417–2434PubMedPubMedCentralCrossRefGoogle Scholar
  21. Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103(1):29–38CrossRefGoogle Scholar
  22. Du T, Zamore PD (2005) microPrimer: the biogenesis and function of microRNA. Development 132(21):4645–4652PubMedCrossRefGoogle Scholar
  23. Eulalio A, Huntzinger E, Izaurralde E (2008) Getting to the root of miRNA-mediated gene silencing. Cell 132(1):9–14PubMedCrossRefGoogle Scholar
  24. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2(2):e219PubMedPubMedCentralCrossRefGoogle Scholar
  25. Feng J, Liu S, Wang M, Lang Q, Jin C (2014) Identification of microRNAs and their targets in tomato infected with Cucumber mosaic virus based on deep sequencing. Planta 240(6):1335–1352PubMedCrossRefPubMedCentralGoogle Scholar
  26. Ferdous J, Hussain SS, Shi BJ (2015) Role of microRNAs in plant drought tolerance. Plant Biotechnol J 13(3):293–305PubMedPubMedCentralCrossRefGoogle Scholar
  27. Guan Q, Lu X, Zeng H, Zhang Y, Zhu J (2013) Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J 74(5):840–851PubMedCrossRefPubMedCentralGoogle Scholar
  28. Hajheidari M, Koncz C, Eick D (2013) Emerging roles for RNA polymerase II CTD in Arabidopsis. Trends Plant Sci 18(11):633–643PubMedCrossRefPubMedCentralGoogle Scholar
  29. Hewezi T, Piya S, Qi M, Balasubramaniam M, Rice JH, Baum TJ (2016) Arabidopsis miR827 mediates post-transcriptional gene silencing of its ubiquitin E3 ligase target gene in the syncytium of the cyst nematode Heterodera schachtii to enhance susceptibility. Plant J 88(2):179–192PubMedCrossRefPubMedCentralGoogle Scholar
  30. Jeyaraj A, Liu S, Zhang X, Zhang R, Shangguan M, Wei C (2017) Genome-wide identification of microRNAs responsive to Ectropis oblique feeding in tea plant (Camellia sinensis L.). Sci Rep 7(1):13634PubMedPubMedCentralCrossRefGoogle Scholar
  31. Jodder J, Basak S, Das R, Kundu P (2017) Coherent regulation of miR167a biogenesis and expression of auxin signaling pathway genes during bacterial stress in tomato. Physiol Mol Plant Pathol 100:97–105CrossRefGoogle Scholar
  32. Kammerhofer N, Radakovic Z, Regis J, Dobrev P, Vankova R, Grundler FM, Siddique S, Hofmann J, Wieczorek K (2015) Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis. New Phytol 207(3):778–789PubMedPubMedCentralCrossRefGoogle Scholar
  33. Katiyar A, Smita S, Muthusamy SK, Chinnusamy V, Pandey DM, Bansal KC (2015) Identification of novel drought-responsive microRNAs and trans-acting siRNAs from Sorghum bicolor (L.) Moench by high-throughput sequencing analysis. Front Plant Sci 6:506PubMedPubMedCentralCrossRefGoogle Scholar
  34. Khandal H, Parween S, Roy R, Meena MK, Chattopadhyay D (2017) MicroRNA profiling provides insights into post-transcriptional regulation of gene expression in chickpea root apex under salinity and water deficiency. Sci Rep 7(1):4632PubMedPubMedCentralCrossRefGoogle Scholar
  35. Koc I, Filiz E, Tombuloglu H (2015) Assessment of miRNA expression profile and differential expression pattern of target genes in cold-tolerant and cold-sensitive tomato cultivars. Biotechnol Biotechnol Equip 29(5):851–860CrossRefGoogle Scholar
  36. Köhler A, Hurt E (2007) Exporting RNA from the nucleus to the cytoplasm. Nat Rev Mol Cell Biol 8(10):761PubMedCrossRefPubMedCentralGoogle Scholar
  37. Kohli D, Joshi G, Deokar AA, Bhardwaj AR, Agarwal M, Katiyar-Agarwal S, Srinivasan R, Jain PK (2014) Identification and characterization of wilt and salt stress-responsive microRNAs in chickpea through high-throughput sequencing. PLoS One 9(10):e108851PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kundu A, Paul S, Dey A, Pal A (2017) High throughput sequencing reveals modulation of microRNAs in Vigna mungo upon Mungbean Yellow Mosaic India Virus inoculation highlighting stress regulation. Plant Sci 257:96–105PubMedCrossRefPubMedCentralGoogle Scholar
  39. Lai EC (2003) microRNAs: runts of the genome assert themselves. Curr Biol 13(23):R925–R936PubMedCrossRefGoogle Scholar
  40. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854PubMedCrossRefPubMedCentralGoogle Scholar
  41. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415PubMedPubMedCentralCrossRefGoogle Scholar
  42. Lenka SK, Muthusamy SK, Chinnusamy V, Bansal KC (2018) Ectopic expression of rice PYL3 enhances cold and drought tolerance in Arabidopsis thaliana. Mol Biotechnol 60:350–361PubMedCrossRefPubMedCentralGoogle Scholar
  43. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20PubMedCrossRefGoogle Scholar
  44. Li Y, Zhang Q, Zhang J, Wu L, Qi Y, Zhou JM (2010) Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol 152(4):2222–2231PubMedPubMedCentralCrossRefGoogle Scholar
  45. Li B, Duan H, Li J, Deng XW, Yin W, Xia X (2013) Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol 81(6):525–539PubMedCrossRefPubMedCentralGoogle Scholar
  46. Li Y, Lu YG, Shi Y, Wu L, Xu YJ, Huang F, Guo XY, Zhang Y, Fan J, Zhao JQ, Zhang HY (2014) Multiple rice microRNAs are involved in immunity against the blast fungus Magnaporthe oryzae. Plant Physiol 164(2):1077–1092PubMedCrossRefPubMedCentralGoogle Scholar
  47. Li H, Dong Y, Chang J, He J, Chen H, Liu Q, Wei C, Ma J, Zhang Y, Yang J, Zhang X (2016) High-throughput microRNA and mRNA sequencing reveals that microRNAs may be involved in melatonin-mediated cold tolerance in Citrullus lanatus L. Front Plant Sci 7:1231PubMedPubMedCentralGoogle Scholar
  48. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrate microRNA genes. Science 299(5612):1540–1540PubMedCrossRefGoogle Scholar
  49. Liu Q, Chen YQ (2009) Insights into the mechanism of plant development: interactions of miRNAs pathway with phytohormone response. Biochem Biophys Res Commun 384(1):1–5PubMedCrossRefPubMedCentralGoogle Scholar
  50. Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14(5):836–843PubMedPubMedCentralCrossRefGoogle Scholar
  51. Liu M, Yu H, Zhao G, Huang Q, Lu Y, Ouyang B (2017) Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing. BMC Genomics 18(1):481PubMedPubMedCentralCrossRefGoogle Scholar
  52. López C, Pérez-Quintero A (2012) The micromics revolution: microRNA-mediated approaches to develop stress-resistant crops. In: Tuteja N, Gill SS, Tiburcio AF, Tuteja R (eds) Improving crop resistance to abiotic stress, vol 1 and 2. Wiley, Chichester, pp 559–590CrossRefGoogle Scholar
  53. Mangrauthia SK, Agarwal S, Sailaja B, Madhav MS, Voleti SR (2013) MicroRNAs and their role in salt stress response in plants. In: Ahmad P, Azooz MM, Prasad MNV (eds) Salt stress in plants. Springer, New York, NY, pp 15–46CrossRefGoogle Scholar
  54. Mangrauthia SK, Bhogireddy S, Agarwal S, Prasanth VV, Voleti SR, Neelamraju S, Subrahmanyam D (2017) Genome-wide changes in microRNA expression during short and prolonged heat stress and recovery in contrasting rice cultivars. J Exp Bot 68(9):2399–2412PubMedPubMedCentralCrossRefGoogle Scholar
  55. Martinez J, Tuschl T (2004) RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev 18(9):975–980PubMedPubMedCentralCrossRefGoogle Scholar
  56. Megha S, Basu U, Kav NN (2018) Regulation of low temperature stress in plants by microRNAs. Plant Cell Environ 41(1):1–15PubMedCrossRefPubMedCentralGoogle Scholar
  57. Megraw M, Baev V, Rusinov V, Jensen ST, Kalantidis K, Hatzigeorgiou AG (2006) MicroRNA promoter element discovery in Arabidopsis. RNA 12(9):1612–1619PubMedPubMedCentralCrossRefGoogle Scholar
  58. Mondal TK, Ganie SA (2014) Identification and characterization of salt responsive miRNA-SSR markers in rice (Oryza sativa). Gene 535(2):204–209PubMedCrossRefPubMedCentralGoogle Scholar
  59. Muthusamy SK, Dalal M, Chinnusamy V, Bansal KC (2016) Differential regulation of genes coding for organelle and cytosolic ClpATPases under biotic and abiotic stresses in wheat. Front Plant Sci 7:929PubMedPubMedCentralGoogle Scholar
  60. Muthusamy SK, Dalal M, Chinnusamy V, Bansal KC (2017) Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. J Plant Physiol 211:100–113PubMedPubMedCentralCrossRefGoogle Scholar
  61. Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22(9):3130–3141PubMedPubMedCentralCrossRefGoogle Scholar
  62. Pacheco R, García-Marcos A, Barajas D, Martiáñez J, Tenllado F (2012) PVX–potyvirus synergistic infections differentially alter microRNA accumulation in Nicotiana benthamiana. Virus Res 165(2):231–235PubMedCrossRefGoogle Scholar
  63. Pradhan B, Naqvi AR, Saraf S, Mukherjee SK, Dey N (2015) Prediction and characterization of Tomato leaf curl New Delhi virus (ToLCNDV) responsive novel microRNAs in Solanum lycopersicum. Virus Res 195:183–195PubMedCrossRefGoogle Scholar
  64. Ramesh SV, Sahu PP, Prasad M, Praveen S, Pappu HR (2017) Geminiviruses and plant hosts: a closer examination of the molecular arms race. Viruses 9(9):256PubMedCentralCrossRefPubMedGoogle Scholar
  65. Reyes CA, Ocolotobiche EE, Marmisollé FE, Robles Luna G, Borniego MB, Bazzini AA, Asurmendi S, García ML (2016) Citrus psorosis virus 24K protein interacts with citrus miRNA precursors, affects their processing and subsequent miRNA accumulation and target expression. Mol Plant Pathol 17(3):317–329PubMedCrossRefGoogle Scholar
  66. Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25(7):2383–2399PubMedPubMedCentralCrossRefGoogle Scholar
  67. Salvador-Guirao R, Baldrich P, Weigel D, Rubio-Somoza I, San Segundo B (2017) The microRNA miR773 is involved in the Arabidopsis immune response to fungal pathogens. Mol Plant-Microbe Interact 31(2):249–259PubMedCrossRefGoogle Scholar
  68. Schwessinger B, Zipfel C (2008) News from the frontline: recent insights into PAMP-triggered immunity in plants. Curr Opin Plant Biol 11(4):389–395PubMedCrossRefPubMedCentralGoogle Scholar
  69. Song G, Zhang R, Zhang S, Li Y, Gao J, Han X, Chen M, Wang J, Li W, Li G (2017) Response of microRNAs to cold treatment in the young spikes of common wheat. BMC Genomics 18(1):212PubMedPubMedCentralCrossRefGoogle Scholar
  70. Snyman MC, Solofoharivelo MC, Souza-Richards R, Stephan D, Murray S, Burger JT (2017) The use of high-throuhput small RNA sequencing reveals differentially expressed microRNAs in response to aster yellows phytoplasma-infection in Vitis vinifera cv. ‘Chardonnay’. PLoS One 12(8):e0182629PubMedPubMedCentralCrossRefGoogle Scholar
  71. Stepien A, Knop K, Dolata J, Taube M, Bajczyk M, Barciszewska-Pacak M, Pacak A, Jarmolowski A, Szweykowska-Kulinska Z (2017) Posttranscriptional coordination of splicing and miRNA biogenesis in plants. Wiley Interdiscip Rev RNA 8(3). Scholar
  72. Sun X, Xu L, Wang Y, Yu R, Zhu X, Luo X, Gong Y, Wang R, Limera C, Zhang K, Liu L (2015) Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.). BMC Genomics 16(1):197PubMedPubMedCentralCrossRefGoogle Scholar
  73. Sun Y, Niu X, Fan M (2017) Genome-wide identification of cucumber green mottle mosaic virus-responsive microRNAs in watermelon. Arch Virol 162(9):2591–2602PubMedCrossRefPubMedCentralGoogle Scholar
  74. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019PubMedPubMedCentralCrossRefGoogle Scholar
  75. Tamaoki D, Seo S, Yamada S, Kano A, Miyamoto A, Shishido H, Miyoshi S, Taniguchi S, Akimitsu K, Gomi K (2013) Jasmonic acid and salicylic acid activate a common defense system in rice. Plant Signal Behav 8(6):e24260PubMedPubMedCentralCrossRefGoogle Scholar
  76. Tian B, Wang S, Todd TC, Johnson CD, Tang G, Trick HN (2017) Genome-wide identification of soybean microRNA responsive to soybean cyst nematodes infection by deep sequencing. BMC Genomics 18(1):572PubMedPubMedCentralCrossRefGoogle Scholar
  77. Tran LT, Taylor JS, Constabel CP (2012) The polyphenol oxidase gene family in land plants: lineage-specific duplication and expansion. BMC Genomics 13(1):395PubMedPubMedCentralCrossRefGoogle Scholar
  78. Treiber T, Treiber N, Meister G (2012) Regulation of microRNA biogenesis and function. Thromb Haemost 108(04):605–610CrossRefGoogle Scholar
  79. Wu J, Yang Z, Wang Y, Zheng L, Ye R, Ji Y, Zhao S et al (2015) Viral-inducible Argonaute18 confers broad-spectrum virus resistance in rice by sequestering a host microRNA. elife 4:e05733PubMedCentralCrossRefPubMedGoogle Scholar
  80. Xia X, Shao Y, Jiang J, Du X, Sheng L, Chen F, Fang W, Guan Z, Chen S (2015) MicroRNA expression profile during aphid feeding in chrysanthemum (Chrysanthemum morifolium). PLoS One 10(12):e0143720PubMedPubMedCentralCrossRefGoogle Scholar
  81. Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC (2005) Expression of Arabidopsis MIRNA genes. Plant Physiol 138(4):2145–2154PubMedPubMedCentralCrossRefGoogle Scholar
  82. Xu HJ, Chen T, Ma XF, Xue J, Pan PL, Zhang XC, Cheng JA, Zhang CX (2013) Genome-wide screening for components of small interfering RNA (siRNA) and micro-RNA (miRNA) pathways in the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Insect Mol Biol 22(6):635–647PubMedCrossRefPubMedCentralGoogle Scholar
  83. Yang X, Ren W, Zhao Q, Zhang P, Wu F, He Y (2014) Homodimerization of HYL1 ensures the correct selection of cleavage sites in primary miRNA. Nucleic Acids Res 42(19):12224–12236PubMedPubMedCentralCrossRefGoogle Scholar
  84. Yin X, Wang J, Cheng H, Wang X, Yu D (2013) Detection and evolutionary analysis of soybean miRNAs responsive to soybean mosaic virus. Planta 237(5):1213–1225PubMedCrossRefPubMedCentralGoogle Scholar
  85. Yu B, Bi L, Zheng B, Ji L, Chevalier D, Agarwal M, Ramachandran V, Li W, Lagrange T, Walker JC, Chen X (2008) The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci U S A 105(29):10073–10078PubMedPubMedCentralCrossRefGoogle Scholar
  86. Yu X, Hou Y, Chen W, Wang S, Wang P, Qu S (2017) Malus hupehensis miR168 targets to ARGONAUTE1 and contributes to the resistance against Botryosphaeria dothidea infection by altering defense responses. Plant Cell Physiol 58(9):1541–1557PubMedCrossRefPubMedCentralGoogle Scholar
  87. Zhang B, Pan X, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289(1):3–16PubMedCrossRefPubMedCentralGoogle Scholar
  88. Zhang W, Gao S, Zhou X, Chellappan P, Chen Z, Zhou X, Zhang X, Fromuth N, Coutino G, Coffey M, Jin H (2011) Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks. Plant Mol Biol 75(1–2):93–105PubMedCrossRefPubMedCentralGoogle Scholar
  89. Zhou X, Wang G, Sutoh K, Zhu JK, Zhang W (2008) Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim Biophys Acta 1779(11):780–788PubMedCrossRefPubMedCentralGoogle Scholar
  90. Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61(15):4157–4168PubMedCrossRefPubMedCentralGoogle Scholar
  91. Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H (2013) Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 161(3):1375–1391PubMedPubMedCentralCrossRefGoogle Scholar
  92. Zhu H, Zhou Y, Castillo-González C, Lu A, Ge C, Zhao YT, Duan L, Li Z, Axtell MJ, Wang XJ, Zhang X (2013) Bidirectional processing of pri-miRNAs with branched terminal loops by Arabidopsis Dicer-like1. Nat Struct Mol Biol 20(9):1106PubMedPubMedCentralCrossRefGoogle Scholar
  93. Zuo JH, Wang YX, Liu HP, Ma YZ, Ju Z, Zhai BQ, Fu DQ, Zhu Y, Luo YB, Zhu BZ (2011) MicroRNAs in tomato plants. Sci China Life Sci 54(7):599–605PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Prasanth Tej Kumar Jagannadham
    • 1
  • Senthilkumar K. Muthusamy
    • 2
  • Parameswaran Chidambaranathan
    • 3
  1. 1.Crop ImprovementICAR - Central Citrus Research InstituteNagpurIndia
  2. 2.Division of Crop ImprovementICAR - Central Tuber Crops Research InstituteThiruvananthapuramIndia
  3. 3.Crop Improvement DivisionICAR - National Rice Research InstituteCuttackIndia

Personalised recommendations