Advertisement

Beneficial Role of Metalloids in Plants: Molecular Understanding and Applicability

  • Priyanka Dhakate
  • Prateek Sharma
  • Sahil Mehta
  • Javed Akter
  • Vacha Bhatt
  • Sonali Chandanshive
  • Dhiresh Chakravarty
  • Mehzabin Rahman
  • Md. Aminul Islam
Chapter

Abstract

Within the periodic table, metalloids are highlighted as a separate class of essential micronutrients which show chemical properties between metals and non-metals. Along with other elements, these metalloids are instrumental in governing plant’s growth, biomass, health, development, metabolism, reproduction and productivity. However, due to modern agricultural practices, rapid industrialization, burning of fossils fuels, military operations, metalliferous mining and anthropogenic activities, there has been an increase in the threshold level of various metals and metalloids in the past 50 years. As a result, the long-term effects of various metalloids have been assessed on the environment, human, livestock and plant health throughout the last two decades. Parallely, the information about bioavailability, accumulation, uptake and metabolism within the plant at various cellular sites has been gathered. One of the relevant components of metalloid which orchestrate the metalloid uptake, translocation and sequestration are metalloid transporters. Therefore, in this chapter, we have highlighted the metalloid sources, beneficial roles, distribution, uptake and transporters.

Keywords

Boron Silicon Selenium Glutathione peroxidase Thioredoxin reductases Metal transporters 

References

  1. Adrees M, Ali S, Rizwan M, Ibrahim M, Abbas F, Farid M et al (2015) The effect of excess copper on growth and physiology of important food crops: a review. Environ Sci Pollut Res 22:8148–8162CrossRefGoogle Scholar
  2. Afshan S, Ali S, Bharwana SA, Rizwan M, Farid M, Abbas F et al (2015) Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Environ Sci Pollut Res 22:11679–11689CrossRefGoogle Scholar
  3. Agre P, Kozono D (2003) Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett 555:72–78PubMedCrossRefPubMedCentralGoogle Scholar
  4. Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C et al (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol Renal Physiol 265:F463–F476CrossRefGoogle Scholar
  5. Alloway BJ (2013) Sources of heavy metals and metalloids in soils. In: Alloway BJ (ed) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer, Dordrecht, pp 11–50CrossRefGoogle Scholar
  6. Anjum NA, Hasanuzzaman M, Hossain MA, Thangavel P, Roychoudhury A, Gill SS et al (2015) Jacks of metal/metalloid chelation trade in plants—an overview. Front Plant Sci 6:192PubMedPubMedCentralGoogle Scholar
  7. Archana NP, Verma P (2017) Boron deficiency and toxicity and their tolerance in plants: a review. J Global Biosci 6:4958–4965Google Scholar
  8. Bansal A, Sankararamakrishnan R (2007) Homology modeling of major intrinsic proteins in rice, maize and Arabidopsis: comparative analysis of transmembrane helix association and aromatic/arginine selectivity filters. BMC Struct Biol 7:27PubMedPubMedCentralCrossRefGoogle Scholar
  9. Banuelos G, Terry N, LeDuc DL, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ Sci Tech 39:1771–1777CrossRefGoogle Scholar
  10. Banuelos G, LeDuc DL, Pilon-Smits EAH, Tagmount A, Terry N (2007) Transgenic Indian mustard overexpressing selenocysteine lyase or selenocysteine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599–605PubMedCrossRefGoogle Scholar
  11. Bardor M, Cremata JA, Lerouge P (2018) Glycan engineering in transgenic plants. Ann Plant Rev 41:409–424CrossRefGoogle Scholar
  12. Baxter I, Dilkes BP (2012) Elemental profiles reflect plant adaptations to the environment. Science 336:1661PubMedCrossRefGoogle Scholar
  13. Belokobylsky AI, Ginturi EI, Kuchava NE, Kirkesali EI, Mosulishvili L, Frontasyeva MV et al (2004) Accumulation of selenium and chromium in the growth dynamics ofspirulina platensis. J Radioanal Nucl Chem 259:65–68CrossRefGoogle Scholar
  14. Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ et al (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:26PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bohnsack CW, Albert LS (1977) Early effects of boron deficiency on indoleacetic acid oxidase levels of squash root tips. Plant Physiol 59:1047–1050PubMedPubMedCentralCrossRefGoogle Scholar
  16. Boldrin PF, Faquin V, Ramos SJ, Boldrin KVF, Ávila FW, Guilherme LRG (2013) Soil and foliar application of selenium in rice biofortification. J Food Compos Anal 31:238–244CrossRefGoogle Scholar
  17. Bonilla I, Mergold-Villasenor C, Campos ME, Sanchez N, Perez H, Lopez L et al (1997) The aberrant cell walls of boron-deficient bean root nodules have no covalently bound hydroxyproline-/proline-rich proteins. Plant Physiol 115:1329PubMedPubMedCentralCrossRefGoogle Scholar
  18. Borgnia M, Nielsen S, Engel A, Agre P (1999) Cellular and molecular biology of the aquaporin water channels. Annu Rev Biochem 68:425–458PubMedCrossRefGoogle Scholar
  19. Bowen P, Menzies J, Ehret D, Samuels L, Glass ADM (1992) Soluble silicon sprays inhibit powdery mildew development on grape leaves. J Am Soc Hortic Sci 117:906–912CrossRefGoogle Scholar
  20. Brenchley WE, Waeikngton K (1927) The role of boron in the growth of plants. Ann Bol 41:167CrossRefGoogle Scholar
  21. Buchner P, Stuiver CEE, Westerman S, Wirtz M, Hell R, Hawkesford MJ et al (2004) Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition. Plant Physiol 136:3396–3408PubMedPubMedCentralCrossRefGoogle Scholar
  22. Camacho-Cristóbal JJ, González-Fontes A (1999) Boron deficiency causes a drastic decrease in nitrate content and nitrate reductase activity, and increases the content of carbohydrates in leaves from tobacco plants. Planta 209:528–536PubMedCrossRefGoogle Scholar
  23. Camacho-Cristóbal JJ, Rexach J, González-Fontes A (2008) Boron in plants: deficiency and toxicity. J Integr Plant Biol 50:1247–1255PubMedCrossRefGoogle Scholar
  24. Camacho-Cristóbal JJ, Navarro-Gochicoa MT, Rexach J, González-Fontes A, Herrera-Rodríguez MB (2018) Plant response to boron deficiency and boron use efficiency in crop plants. Plant micronutrient use efficiency. Academic Press, New York, NYGoogle Scholar
  25. Cañon P, Aquea F, Rodríguez-Hoces de La Guardia A, Arce-Johnson P (2013) Functional characterization of Citrus macrophylla BOR1 as a boron transporter. Physiol Plant 149:329–339PubMedGoogle Scholar
  26. Cao D, Liu Y, Ma L, Jin X, Guo G, Tan R et al (2018) Transcriptome analysis of differentially expressed genes involved in selenium accumulation in tea plant (Camellia sinensis). PLoS One 13:e0197506PubMedPubMedCentralCrossRefGoogle Scholar
  27. Carpena Artes O, Carpena Ruiz RO (1983) Influence of boron on amino acid contents in tomato plant I. sap. Agrochimica 27:498–505Google Scholar
  28. Castrillo G, Sánchez-Bermejo E, de Lorenzo L, Crevillén P, Fraile-Escanciano A, Mohan TC (2013) WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. Plant Cell 25:2944–2957PubMedPubMedCentralCrossRefGoogle Scholar
  29. Catarecha P, Segura MD, Franco-Zorrilla JM, García-Ponce B, Lanza M, Solano R et al (2007) A mutant of the arabidopsis phosphate transporter pht1;1 displays enhanced arsenic accumulation. Plant Cell 19:1123PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chatterjee C, Sinha P, Agarwala SC (1990) Interactive effect of boron and phosphorus on growth and metabolism of maize grown in refined sand. Can J Plant Sci 70:455–460CrossRefGoogle Scholar
  31. Chatterjee M, Tabi Z, Galli M, Malcomber S, Buck A, Muszynski M et al (2014) The boron efflux transporter rotten ear is required for maize inflorescence development and fertility. Plant Cell 26:2962–2977PubMedPubMedCentralCrossRefGoogle Scholar
  32. Chen Y, Sun SK, Tang Z, Liu G, Moore KL, Maathuis FJ et al (2017) The Nodulin 26-like intrinsic membrane protein OsNIP3; 2 is involved in arsenite uptake by lateral roots in rice. J Exp Bot 68:3007–3016PubMedCrossRefGoogle Scholar
  33. Chiba Y, Mitani N, Yamaji N, Ma JF (2009) HvLsi1 is a silicon influx transporter in barley. Plant J 57:810–818PubMedCrossRefGoogle Scholar
  34. Coskun D, Britto DT, Huynh WQ, Kronzucker HJ (2016) The role of silicon in higher plants under salinity and drought stress. Front Plant Sci 7:1072PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dallagnol LJ, Rodrigues FA, Mielli MVB (2013) Silicon improves the emergence and sanity of rice seedlings obtained from seeds infected with Bipolaris oryzae. Trop Plant Pathol 38:478–484CrossRefGoogle Scholar
  36. Dannel F, Pfeffer H, Ro MV (2000) Characterization of root boron pools, boron uptake and boron translocation in sunflower using the stable isotope 10B and 11B. Austr J Plant Physiol 156:756–761CrossRefGoogle Scholar
  37. Datnoff LE (2005) Silicon in the life and performance of turfgrass. Appl Turfgrass SciGoogle Scholar
  38. Dave IC, Kannan S (1981) Influence of boron deficiency on micronutrients absorption by Phaseolus vulgaris and protein contents in cotyledons. Acta Physiol Plant 3:27–32Google Scholar
  39. Deshmukh RK, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F et al (2013) Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol 83:303–315PubMedCrossRefGoogle Scholar
  40. Deshmukh RK, Vivancos J, Ramakrishnan G, Guérin V, Carpentier G, Sonah H et al (2015) A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. Plant J 83:489–500PubMedCrossRefPubMedCentralGoogle Scholar
  41. Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF et al (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteinesynthetase expression. Nat Biotechnol 20:1140–1145PubMedCrossRefPubMedCentralGoogle Scholar
  42. Ding TP, Zhou JX, Wan DF, Chen ZY, Wang CY, Zhang F (2008) Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon. Geochim Cosmochim Acta 72:1381–1395CrossRefGoogle Scholar
  43. DiTusa SF, Fontenot EB, Wallace RW, Silvers MA, Steele TN, Elnagar AH et al (2015) A member of the Phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter. New Phytol 209:762–772PubMedCrossRefGoogle Scholar
  44. Doshi R, McGrath AP, Piñeros M, Szewczyk P, Garza DM, Kochian LV et al (2017) Functional characterization and discovery of modulators of SbMATE, the agronomically important aluminium tolerance transporter from Sorghum bicolor. Sci Rep 7:17996PubMedPubMedCentralCrossRefGoogle Scholar
  45. Duggar WM (1983) Boron in plant metabolism. Encyl Plant Physiol New Ser 15B:626–650Google Scholar
  46. Durbak AR, Phillips KA, Pike S, O’Neill MA, Mares J, Gallavotti A et al (2014) Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize. Plant Cell 26:2978–2995PubMedPubMedCentralCrossRefGoogle Scholar
  47. Durrett TP, Gassmann W, Rogers EE (2007) The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol 144:197PubMedPubMedCentralCrossRefGoogle Scholar
  48. El Kassis E, Cathala N, Rouached H, Fourcroy P, Berthomieu P, Terry N et al (2007) Characterization of a selenate-resistant arabidopsis mutant. Root growth as a potential target for selenate toxicity. Plant Physiol 143:1231–1241PubMedPubMedCentralCrossRefGoogle Scholar
  49. Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B et al (2004) Production of Se-methylselenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4:1–11PubMedPubMedCentralCrossRefGoogle Scholar
  50. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Scientific World Journal 2015:18CrossRefGoogle Scholar
  51. Fang CX, Wang QS, Yu Y, Li QM, Zhang HL, Wu XC et al (2011) Suppression and overexpression of Lsi1 induce differential gene expression in rice under ultraviolet radiation. Plant Growth Regul 65:1–10CrossRefGoogle Scholar
  52. Farooq MA, Islam F, Ali B, Najeeb U, Mao B, Gill RA et al (2016) Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism. Environ Exp Bot 132:42–52CrossRefGoogle Scholar
  53. Fauteux F, Chain F, Belzile F, Menzies JG, Bélanger RR (2006) The protective role of silicon in the Arabidopsis–powdery mildew pathosystem. Proc Natl Acad Sci 103:17554–17559PubMedCrossRefPubMedCentralGoogle Scholar
  54. Feist LJ, Parker DR (2008) Ecotypic variation in selenium accumulation among populations of Stanleya pinnata. New Phytol 149:61–69CrossRefGoogle Scholar
  55. Fordyce F (2005) Selenium deficiency and toxicity in the environment. Elsevier, LondonGoogle Scholar
  56. Frick A, Eriksson UK, de Mattia F, Oberg F, Hedfalk K, Neutze R et al (2014) X-ray structure of human aquaporin 2 and its implications for nephrogenic diabetes insipidus and trafficking. Proc Natl Acad Sci U S A 111:6305–6310PubMedPubMedCentralCrossRefGoogle Scholar
  57. Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K et al (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1xxxPubMedCrossRefPubMedCentralGoogle Scholar
  58. Gigolashvili T, Kopriva S (2014) Transporters in plant sulphur metabolism. Front Plant Sci 5:422CrossRefGoogle Scholar
  59. González E, Solano R, Rubio V, Leyva A, Paz-Ares J (2005) PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plantspecific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell 17:3500–3512PubMedPubMedCentralCrossRefGoogle Scholar
  60. González-Fontes A, Navarro-Gochicoa MT, Camacho-Cristóbal JJ, Herrera-Rodríguez MB, Quiles-Pando C, Rexach J (2014) Is Ca2+ involved in the signal transduction pathway of boron deficiency? New hypotheses for sensing boron deprivation. Plant Sci 217:135–139PubMedCrossRefPubMedCentralGoogle Scholar
  61. Grispen VMJ, Irtelli B, Hakvoorta HJ, Vooijs R, Bliek B, Bookum WM et al (2009) Expression of the Arabidopsis metallothionein 2b enhances arsenite sensitivity and root to shoot translocation in tobacco. Environ Exp Bot 66:69–73CrossRefGoogle Scholar
  62. Groppa MD, Ianuzzo MP, Tomaro ML, Benavides MP (2007) Polyamine metabolism in sunflower plants under long term cadmium or copper stress. Amino Acids 32:265–275PubMedCrossRefPubMedCentralGoogle Scholar
  63. Gupta M, Gupta S (2016) An overview of selenium uptake, metabolism, and toxicity in plants. Front Plant Sci 7:2074PubMedPubMedCentralGoogle Scholar
  64. Hajiboland R, Farhanghi F (2010) Remobilization of boron, photosynthesis, phenolic metabolism and anti-oxidant defense capacity in boron-deficient turnip (Brassica rapa L.) plants. Soil Sci Plant Nutr 56:427–437CrossRefGoogle Scholar
  65. Han S, Chen L-S, Jiang H-X, Smith BR, Yang L-T, Xie C-Y (2008) Boron deficiency decreases growth and photosynthesis, and increases starch and hexoses in leaves of citrus seedlings. J Plant Physiol 165:1331–1341PubMedCrossRefPubMedCentralGoogle Scholar
  66. Hanaoka H, Uraguchi S, Takano J, Tanaka M, Fujiwara T (2014) OsNIP3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions. Plant J 78:890–902PubMedCrossRefPubMedCentralGoogle Scholar
  67. Hanson B, Lindblom SD, Loeffler ML, Pilon-Smits EAH (2004) Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytol 162:655–662CrossRefGoogle Scholar
  68. Hartikainen H, Xue T (1999) The promotive effect of selenium on plant growth as triggered by ultraviolet irradiation. J Environ Qual 28:1372–1375CrossRefGoogle Scholar
  69. Hasanuzzaman M, Nahar K, Hossain SM, Mahmud AJ, Rahman A, Inafuku M et al (2017) Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int J Mol Sci 18:200PubMedCentralCrossRefGoogle Scholar
  70. Hawrylak-Nowak B (2009) Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol Trace Elem Res 132:259–269PubMedCrossRefPubMedCentralGoogle Scholar
  71. Hawrylak-Nowak B, Dresler S, Wójcik M (2014) Selenium affects physiological parameters and phytochelatins accumulation in cucumber (Cucumis sativus L.) plants grown under cadmium exposure. Sci Hortic 172:10–18CrossRefGoogle Scholar
  72. He Z, Yan H, Chen Y, Shen H, Xu W, Zhang H et al (2016) An aquaporin Pv TIP 4; 1 from Pteris vittata may mediate arsenite uptake. New Phytol 209:746–761PubMedCrossRefPubMedCentralGoogle Scholar
  73. Helliwell EE, Wang Q, Yang Y (2013) Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaportheoryzae and Rhizoctoniasolani. Plant Biotechnol J 11:33–42PubMedCrossRefPubMedCentralGoogle Scholar
  74. Hladun KR, Parker DR, Tran KD, Trumble JT (2013) Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.). Environ Pollut 172:70–75PubMedCrossRefPubMedCentralGoogle Scholar
  75. Huysen T, Terry N, Pilon-Smits EAH (2004) Exploring the selenium phytoremediation potential of transgenic indian mustard overexpressing ATP sulfurylase or cystathionine-γ-synthase. Int J Phytoremediation 6:111–118PubMedCrossRefPubMedCentralGoogle Scholar
  76. Hwang J-U, Song W-Y, Hong D, Ko D, Yamaoka Y, Jang S et al (2016) Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Mol Plant 9:338–355PubMedCrossRefPubMedCentralGoogle Scholar
  77. Isayenkov SV, Maathuis FJ (2008) The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Lett 582:1625–1628PubMedCrossRefPubMedCentralGoogle Scholar
  78. Jehangir IA, Wani SH, Bhat MA, Hussain A, Raja W, Haribhushan A (2017) Micronutrients for crop production: role of boron. Int J Curr Microbiol App Sci 6:5347–5353CrossRefGoogle Scholar
  79. Josten P, Kutschera U (1999) The micronutrient boron causes the development of adventitious roots in sunflower cuttings. Ann Bot 84:337–342CrossRefGoogle Scholar
  80. Kamiya T, Islam MR, Duan GL, Uraguchi S, Fujiwara T (2013) Phosphate deficiency signaling pathway is a target of arsenate and phosphate transporter OsPT1 is involved in As accumulation in shoots of rice. Soil Sci Plant Nutr 59:580–590CrossRefGoogle Scholar
  81. Kanto T, Matsuura K, Yamada M, Usami T, Amemiya Y (2009) UV-B radiation for control of strawberry powdery mildew. Acta Hortic 842:359–362CrossRefGoogle Scholar
  82. Kastori R, Petrović N (1989) Effect of boron on nitrate reductase activity in young sunflower plants. J Plant Nutr 12:621–632CrossRefGoogle Scholar
  83. Kato Y, Miwa K, Takano J, Wada M, Fujiwara T (2009) Highly boron deficiency-tolerant plants generated by enhanced expression of NIP5;1, a boric acid channel. Plant Cell Physiol 50:58–66PubMedCrossRefPubMedCentralGoogle Scholar
  84. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10:845PubMedPubMedCentralCrossRefGoogle Scholar
  85. Kitchen P, Conner AC (2015) Control of the aquaporin-4 channel water permeability by structural dynamics of aromatic/arginine selectivity filter residues. Biochemistry 17:6753–6755CrossRefGoogle Scholar
  86. Kohl HC, Oertli JJ (1961) Distribution of boron in leaves. Plant Physiol 36:420–424PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kouchi H, Kumazawa K (1976) Anatomical responses of root tips to boron deficiency. Soil Sci Plant Nutr 22:53–71CrossRefGoogle Scholar
  88. Kudo M, Kidokoro S, Yoshida T, Mizoi J, Todaka D, Fernie AR et al (2017) Double overexpression of DREB and PIF transcription factors improves drought stress tolerance and cell elongation in transgenic plants. Plant Biotechnol J 15:458–471PubMedCrossRefPubMedCentralGoogle Scholar
  89. Kumar K, Mosa KA, Chhikara S, Musante C, White JC, Dhankher OP (2014) Two rice plasma membrane intrinsic proteins, OsPIP2; 4 and OsPIP2; 7, are involved in transport and providing tolerance to boron toxicity. Planta 239:187–198PubMedCrossRefPubMedCentralGoogle Scholar
  90. Kumarathilaka P, Seneweera S, Meharg A, Bundschuh J (2018) Arsenic accumulation in rice (Oryza sativa L.) is influenced by environment and genetic factors. Sci Total Environ 642:485–496PubMedCrossRefPubMedCentralGoogle Scholar
  91. LeBlanc MS, McKinney EC, Meagher RB, Smith AP (2013) Hijacking membrane transporters for arsenic phytoextraction. J Biotechnol 163:1–9PubMedCrossRefPubMedCentralGoogle Scholar
  92. LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP et al (2004) Overexpression of selenocysteine methyltransferase in arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383PubMedPubMedCentralCrossRefGoogle Scholar
  93. LeDuc DL, AbdelSamie M, Móntes-Bayon M, Wu CP, Reisinger SJ, Terry N (2006) Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environ Pollut 144:70–76PubMedCrossRefPubMedCentralGoogle Scholar
  94. Lenoble ME, Blevins DG, Miles RJ (1996) Prevention of aluminium toxicity with supplemental boron. II. Stimulation of root growth in an acidic, high-aluminium subsoil. Plant Cell Environ 19:1143–1148CrossRefGoogle Scholar
  95. Li H-F, McGrath SP, Zhao F-J (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102PubMedCrossRefPubMedCentralGoogle Scholar
  96. Li G, Santoni V, Maurel C (2014) Plant aquaporins: roles in plant physiology. Biochim Biophys Acta 1840:1574–1582PubMedCrossRefPubMedCentralGoogle Scholar
  97. Lindblom SD, Wangeline AL, Valdez Barillas JR, Devilbiss B, Fakra SC, Pilon-Smits EAH (2018) Fungal endophyte alternaria tenuissima can affect growth and selenium accumulation in its hyperaccumulator host Astragalus bisulcatus. Front Plant Sci 9:1213PubMedPubMedCentralCrossRefGoogle Scholar
  98. Lu G, Wu T, Yuan Q, Wang H, Wang H, Ding F et al (2015) Synthesis of large single-crystal hexagonal boron nitride grains on Cu–Ni alloy. Nat Commun 6:6160PubMedCrossRefPubMedCentralGoogle Scholar
  99. Lv Q, Wang L, Wang J-Z, Li P, Chen Y-L, Du J et al (2017) SHB1/HY1 alleviates excess boron stress by increasing bor4 expression level and maintaining boron homeostasis in Arabidopsis roots. Front Plant Sci 8:790PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lyons GH, Genc Y, Soole K, Stangoulis JCR, Liu F, Graham RD (2009) Selenium increases seed production in Brassica. Plant and Soil 318:73–80CrossRefGoogle Scholar
  101. Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18CrossRefGoogle Scholar
  102. Ma JF, Yamaji N (2015) A cooperative system of silicon transport in plants. Trends Plant Sci 20:435–442PubMedCrossRefGoogle Scholar
  103. Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M et al (2006) A silicon transporter in rice. Nature 440:688–691PubMedCrossRefGoogle Scholar
  104. Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T et al (2007) An efflux transporter of silicon in rice. Nature 448:209PubMedCrossRefGoogle Scholar
  105. Malerba M, Cerana R (2018) Effect of selenium on the responses induced by heat stress in plant cell cultures. Plants 7:64PubMedCentralCrossRefPubMedGoogle Scholar
  106. Marschner H (1995) Mineral nutrition of higher plants. Academic, Boston, MAGoogle Scholar
  107. Marschner P (2012) Mineral nutrition of higher plants. Academic Press, San Diego, CAGoogle Scholar
  108. Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95:1321–1358PubMedCrossRefGoogle Scholar
  109. Maze P (1919) Mineral nutrient solution for maize. Ann Inst Pasteur 33:139–173Google Scholar
  110. Meena PD, Thomas L, Singh D (2014) Assessment of yield losses in Brassica juncea due to downy mildew (Hyaloperonospora brassicae). J Oilseed Brassica 5:73–77Google Scholar
  111. Meharg Andrew A, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43CrossRefGoogle Scholar
  112. Mendoza-Cózatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562PubMedPubMedCentralCrossRefGoogle Scholar
  113. Missana T, Alonso U, García-Gutiérrez M (2009) Experimental study and modelling of selenite sorption onto illite and smectite clays. J Colloid Interface Sci 334:132–138PubMedCrossRefGoogle Scholar
  114. Mitani N, Ma JF, Iwashita T (2005) Identification of the silicon form in xylem sap of rice (Oryza sativa L.). Plant Cell Physiol 46:279–283PubMedCrossRefGoogle Scholar
  115. Mitani N, Yamaji N, Ma JF (2008) Characterization of substrate specificity of a rice silicon transporter, Lsi1. Pflugers Arch 456:679–686PubMedCrossRefGoogle Scholar
  116. Mitani N, Yamaji N, Ma JF (2009) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5–12PubMedCrossRefGoogle Scholar
  117. Mitani N, Yamaji N, Ago Y, Iwasaki K, Ma JF (2011) Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant J 66:231–240PubMedCrossRefGoogle Scholar
  118. Miwa K, Fujiwara T (2010) Boron transport in plants: co-ordinated regulation of transporters. Ann Bot 105:1103–1108PubMedPubMedCentralCrossRefGoogle Scholar
  119. Miwa K, Takano J, Fujiwara T (2006) Improvement of seed yields under boron-limiting conditions through overexpression of BOR1, a boron transporter for xylem loading, in Arabidopsis thaliana. Plant J 46:1084–1091PubMedCrossRefGoogle Scholar
  120. Montpetit J, Vivancos J, Mitani-Ueno N, Yamaji N, Rémus-Borel W, Belzile F et al (2012) Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol Biol 79:35–46PubMedCrossRefGoogle Scholar
  121. Moog PR, Kooij TAW, Brüggemann W, Schiefelbein JW, Kuiper PJC (1995) Responses to iron deficiency in Arabidopsis thaliana: the Turbo iron reductase does not depend on the formation of root hairs and transfer cells. Planta 195:505–513PubMedCrossRefGoogle Scholar
  122. Mosa KA, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C et al (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21:1265–1277PubMedCrossRefGoogle Scholar
  123. Mosa KA, Kumar K, Chhikara S, Musante C, White JC, Dhankher OP (2016) Enhanced boron tolerance in plants mediated by bidirectional transport through plasma membrane intrinsic proteins. Sci Rep 6:21640PubMedPubMedCentralCrossRefGoogle Scholar
  124. Mroczek-Zdyrska M, Wójcik M (2012) The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. Biol Trace Elem Res 147:320–328PubMedCrossRefGoogle Scholar
  125. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216CrossRefGoogle Scholar
  126. Nakagawa Y, Hanaoka H, Kobayashi M, Miyoshi K, Miwa K, Fujiwara T (2007) Cell-type specificity of the expression of Os BOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell 19:2624–2635PubMedPubMedCentralCrossRefGoogle Scholar
  127. Nascimento CWA, Xing B (2006) Phytoextraction: a review on enhanced metal availability and plant accumulation. Sci Agric 63:299–311CrossRefGoogle Scholar
  128. Navaza AP, Bayon MM, LeDuc DL, Terry N, Sanz-Medel A (2006) Study of phytochelatins and other related thiols as complexing biomolecules of As and Cd inwild type and genetically modified Brassica juncea plants. J. Mass Spectrom 41:323–331CrossRefGoogle Scholar
  129. Nawaz F, Ahmad R, Ashraf MY, Waraich EA, Khan SZ (2015) Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicol Environ Saf 113:191–200PubMedCrossRefGoogle Scholar
  130. Ning C-J, Ding N, Wu G-L, Meng H-J, Wang Y-N, Wang Q-H (2013) Proteomics research on the effects of applying selenium to apple leaves on photosynthesis. Plant Physiol Biochem 70:1–6PubMedCrossRefGoogle Scholar
  131. Ovecka M, Takac T (2014) Managing heavy metal toxicity stress in plants: biological and biotechnological tools. Biotechnol Adv 32:73–86PubMedCrossRefGoogle Scholar
  132. Oves M, Saghir KM, Huda QA, Nadeen FM, Almeelbi T (2016) Heavy metals: biological importance and detoxification strategies. J Bioremed Biodegr 7:334Google Scholar
  133. Palmer C, Guerinot ML (2009) A question of balance: facing the challenges of Cu, Fe and Zn homeostasis. Nat Chem Biol 5:333–340PubMedPubMedCentralCrossRefGoogle Scholar
  134. Palmgren MG (2001) Plant plasma membrane H+-ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845PubMedCrossRefGoogle Scholar
  135. Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjørring JK et al (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473PubMedCrossRefGoogle Scholar
  136. Pang Y, Li L, Ren F, Lu P, Wei P, Cai J et al (2010) Overexpression of the tonoplast aquaporin AtTIP5;1 conferred tolerance to boron toxicity in Arabidopsis. J Genet Genomics 37:389–397PubMedCrossRefGoogle Scholar
  137. Peralta-Videa JR, Lopez ML, Narayan M, Saupe G, Gardea-Torresdey J (2009) The biochemistry of environmental heavy metal uptake by plants: implications for the food chain. Int J Biochem Cell Biol 41:1665–1677PubMedCrossRefGoogle Scholar
  138. Pérez-Castro R, Kasai K, Gainza-Cortés F, Ruiz-Lara S, Casaretto JA, Peña-Cortés H et al (2012) VvBOR1, the grapevine ortholog of AtBOR1, encodes an efflux boron transporter that is differentially expressed throughout reproductive development of Vitis vinifera L. Plant Cell Physiol 53:485–494PubMedCrossRefGoogle Scholar
  139. Peterson PJ, Benson LM, Zieve R (1981) Metalloids. In: Lepp NW (ed) Effect of heavy metal pollution on plants: effects of trace metals on plant function. Springer, Dordrecht, pp 279–342CrossRefGoogle Scholar
  140. Pettersson N, Filipsson C, Becit E, Brive L, Hohmann S (2012) Aquaporins in yeasts and filamentous fungi. Biol Cell 97:487–500CrossRefGoogle Scholar
  141. Pilbeam DJ, Greathead HMR, Drihem K (2015) Selenium. In: Barker AV, Pilbeam DJ (eds) A handbook of plant nutrition. CRC Press, Boca Raton, FL, pp 165–198Google Scholar
  142. Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274PubMedCrossRefGoogle Scholar
  143. Pilon-Smits EAH, Winkel LHE, Lin Z-Q (2017) Selenium in plants: molecular, physiological, ecological and evolutionary aspects. Springer International Publishing, ChamCrossRefGoogle Scholar
  144. Pineau C, Loubet S, Lefoulon C, Chalies C, Fizames C, Lacombe B et al (2012) Natural variation at the FRD3 MATE transporter locus reveals cross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana. PLoS Genet 8:e1003120PubMedPubMedCentralCrossRefGoogle Scholar
  145. Pommerrenig B, Diehn TA, Bienert GP (2015) Metalloido-porins: essentiality of nodulin 26-like intrinsic proteins in metalloid transport. Plant Sci 238:212–227PubMedCrossRefGoogle Scholar
  146. Porcel R, Bustamante A, Ros R, Serrano R, Mulet Salort JM (2018) BvCOLD1: a novel aquaporin from sugar beet (Beta vulgaris L.) involved in boron homeostasis and abiotic stress. Plant Cell Environ 41:2844PubMedCrossRefGoogle Scholar
  147. Pukacka S, Ratajczak E, Kalemba E (2011) The protective role of selenium in recalcitrant Acer saccharium L. seeds subjected to desiccation. J Plant Physiol 168:220–225PubMedCrossRefGoogle Scholar
  148. Quilis J, López-García B, Meynard D, Guiderdoni E, San Segundo B (2014) Inducible expression of a fusion gene encoding two proteinase inhibitors leads to insect and pathogen resistance in transgenic rice. Plant Biotechnol J 12:367–377PubMedCrossRefGoogle Scholar
  149. Rahmat S, Hajiboland R, Sadeghzade N (2017) Selenium delays leaf senescence in oilseed rape plants. Photosynthetica 55:338–350CrossRefGoogle Scholar
  150. Rausch C, Bucher M (2002) Molecular mechanisms of phosphate transport in plants. Planta 21:23–37CrossRefGoogle Scholar
  151. Rayman MP (2000) The importance of selenium to human health. Lancet 356:233–241PubMedCrossRefGoogle Scholar
  152. Reid R, Fitzpatrick K (2009) Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat. Plant Physiol 151:413–420PubMedPubMedCentralCrossRefGoogle Scholar
  153. Remy E, Cabrito TR, Batista RA, Teixeira MC, Sá-Correia I, Duque P (2012) The Pht1; 9 and Pht1; 8 transporters mediate inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol 195:356–371PubMedCrossRefGoogle Scholar
  154. Renkema H, Koopmans A, Kersbergen L, Kikkert J, Hale B, Berkelaar E (2012) The effect of transpiration on selenium uptake and mobility in durum wheat and spring canola. Plant and Soil 354:239–250CrossRefGoogle Scholar
  155. Rivera-Serrano EE, Rodriguez-Welsh MF, Hicks GR, Rojas-Pierce M (2012) A small molecule inhibitor partitions two distinct pathways for trafficking of tonoplast intrinsic proteins in Arabidopsis. PLoS One 7:e44735PubMedPubMedCentralCrossRefGoogle Scholar
  156. Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporin genes and analysis of their expression and function. Plant Cell Physiol 46:1568–1577PubMedCrossRefGoogle Scholar
  157. Schiavon M, Pilon-Smits EAH (2016) The fascinating facets of plant selenium accumulation – biochemistry, physiology, evolution and ecology. New Phytol 213:1582–1596PubMedCrossRefGoogle Scholar
  158. Schmidt W (2002) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141:1–26CrossRefGoogle Scholar
  159. Shehzad MA, Maqsood M, Abbas T, Ahmad N (2016) Foliar boron spray for improved yield, oil quality and water use efficiency in water stressed sunflower. Sains Malaysiana 45:1497–1507Google Scholar
  160. Shelp BJ (1988) Boron mobility and nutrition in broccoli (Brassica oleracea var. italica). Ann Bot 61:83–91CrossRefGoogle Scholar
  161. Shelp BJ (1993) Physiology and biochemistry of boron in plants. In: Gupta UC (ed) Boron and its role in crop production. CRC Press, Boca Raton, FL, pp 53–85Google Scholar
  162. Shi S, Wang T, Chen Z, Tang Z, Wu Z, Salt DE et al (2016) OsHAC1; 1 and OsHAC1; 2 function as arsenate reductases and regulate arsenic accumulation. Plant Physiol 172:1708PubMedPubMedCentralCrossRefGoogle Scholar
  163. Shin H, Shin HS, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642PubMedCrossRefGoogle Scholar
  164. Shukla D, Kesari R, Mishra S, Dwivedi S, Tripathi RD, Nath P et al (2012) Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep 31:1687–1699PubMedCrossRefGoogle Scholar
  165. Shukla D, Kesari R, Tiwari M, Dwivedi S, Tripathi RD, Nath P et al (2013) Expressionof Ceratophyllum demersum phytochelatin synthase, CdPCS1, in Escherichia coli and Arabidopsis enhances heavy metal(loid)s accumulation. Protoplasma 250:1263–1272PubMedCrossRefGoogle Scholar
  166. Sinha P, Jain R, Chatterjee C (2000) Interactive effect of boron and zinc on growth and metabolism of mustard. Commun Soil Sci Plant Anal 31:41–49CrossRefGoogle Scholar
  167. Song Z, Shao H, Huang H, Shen Y, Wang L, Wu F et al (2017) Overexpression of the phosphate transporter gene OsPT8 improves the Pi and selenium contents in Nicotiana tabacum. Environ Exp Bot 137:158–165CrossRefGoogle Scholar
  168. Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T et al (2005) Analysis of sulfur and selenium assimilation in Astragalus plants with varying capacities to accumulate selenium. Plant J 42:785–797PubMedCrossRefGoogle Scholar
  169. Stroud JL, Li HF, Lopez-Bellido FJ, Broadley MR, Foot I, Fairweather-Tait SJ et al (2010) Impact of sulphur fertilisation on crop response to selenium fertilisation. Plant and Soil 332:31CrossRefGoogle Scholar
  170. Sun H, Guo J, Duan Y, Zhang T, Huo H, Gong H (2017) Isolation and functional characterization of CsLsi1, a silicon transporter gene in Cucumis sativus. Physiol Plant 159:201–124PubMedCrossRefGoogle Scholar
  171. Takada S, Miwa K, Omori H, Fujiwara T, Naito S, Takano J (2014) Improved tolerance to boron deficiency by enhanced expression of the boron transporter BOR2. Soil Sci Plant Nutr 60:341–348CrossRefGoogle Scholar
  172. Takahashi E, Hino K (1978) Silica uptake by plant with special reference to the forms of dissolved silica. Jpn J Soil Sci Manure 49:357–360Google Scholar
  173. Takahashi E, Ma JF, Miyake Y (1990) The possibility of silicon as an essential element for higher plants. Comm Agric Food Chem 2:99–102Google Scholar
  174. Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K et al (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337PubMedCrossRefPubMedCentralGoogle Scholar
  175. Takano J, Miwa K, Fujiwara T (2008) Boron transport mechanisms: collaboration of channels and transporters. Trends Plant Sci 13:451–457PubMedCrossRefPubMedCentralGoogle Scholar
  176. Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara T (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20:2860PubMedPubMedCentralCrossRefGoogle Scholar
  177. Tanaka M, Takano J, Chiba Y, Lombardo F, Ogasawara Y, Onouchi H et al (2011) Boron-dependent degradation of NIP5;1 mRNA for acclimation to excess boron conditions in Arabidopsis. Plant Cell 23:3547–3559PubMedPubMedCentralCrossRefGoogle Scholar
  178. Tanaka N, Uraguchi S, Saito A, Kajikawa M, Kasai K, Sato Y et al (2013) Roles of pollen-specific boron efflux transporter, OsBOR4, in the rice fertilization process. Plant Cell Physiol 54:2011–2019PubMedCrossRefPubMedCentralGoogle Scholar
  179. Tanaka M, Sotta N, Yamazumi Y, Yamashita Y, Miwa K, Murota K et al (2016) The minimum open reading frame, AUG-stop, induces boron-dependent ribosome stalling and mRNA degradation. Plant Cell 28:2830–2840PubMedPubMedCentralCrossRefGoogle Scholar
  180. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS 101:133–164PubMedPubMedCentralGoogle Scholar
  181. Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol Plant Mol Biol 51:401–432PubMedCrossRefPubMedCentralGoogle Scholar
  182. Tubana BS, Babu T, Datnoff LE (2016) A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. Soil Sci 181:393–411Google Scholar
  183. Uraguchi S, Fujiwara T (2011) Significant contribution of boron stored in seeds to initial growth of rice seedlings. Plant and Soil 340:435–442CrossRefGoogle Scholar
  184. Uraguchi S, Kato Y, Hanaoka H, Miwa K, Fujiwara T (2014) Generation of boron-deficiency-tolerant tomato by overexpressing an Arabidopsis thaliana borate transporter AtBOR1. Front Plant Sci 5:125PubMedPubMedCentralCrossRefGoogle Scholar
  185. Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. Adv Agron 51:173–212CrossRefGoogle Scholar
  186. Wakuta S, Mineta K, Amano T, Toyoda A, Fujiwara T, Naito S et al (2015) Evolutionary divergence of plant borate exporters and critical amino acid residues for the polar localization and boron-dependent vacuolar sorting of AtBOR1. Plant Cell Physiol 56:852–862PubMedCrossRefPubMedCentralGoogle Scholar
  187. Wang H, Xu Q, Kong YH, Chen Y, Duan JY, Wu WH et al (2014) Arabidopsis WRKY45 transcription factor activates PHT1; 1 expression in response to phosphate starvation. Plant Physiol 164:2020PubMedPubMedCentralCrossRefGoogle Scholar
  188. Wang P, Zhang W, Mao C, Xu G, Zhao FJ (2016) The role of OsPT8 in arsenate uptake and varietal difference in arsenate tolerance in rice. J Exp Bot 67:6051–6059PubMedCrossRefPubMedCentralGoogle Scholar
  189. Wang S, Yoshinari A, Shimada T, Hara-Nishimura I, Mitani-Ueno N, Feng Ma J et al (2017) Polar localization of the nip5;1 boric acid channel is maintained by endocytosis and facilitates boron transport in Arabidopsis roots. Plant Cell 29:824–842PubMedPubMedCentralCrossRefGoogle Scholar
  190. Wang C, Na G, Bermejo ES, Chen Y, Banks JA, Salt DE et al (2018) Dissecting the components controlling root-to-shoot arsenic translocation in Arabidopsis thaliana. New Phytol 217:206–218PubMedCrossRefPubMedCentralGoogle Scholar
  191. Warington K (1923) The effect of boric acid and borax on the bean and certain other plants. Ann Bot 37:629–672CrossRefGoogle Scholar
  192. White PJ (2015) Selenium accumulation by plants. Ann Bot 117:217–235PubMedPubMedCentralGoogle Scholar
  193. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets – iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84PubMedCrossRefPubMedCentralGoogle Scholar
  194. Wu ZC, Ren HY, Steve PM, Wu P, Zhao FJ (2011) Investigating the contribution of the phosphate transport pathway to arsenic accumulation in rice. Plant Physiol 157:498–508PubMedPubMedCentralCrossRefGoogle Scholar
  195. Wu Q, Yang Z, Nie Y, Shi Y, Fan D (2014) Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett 347:159–166PubMedCrossRefPubMedCentralGoogle Scholar
  196. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:20Google Scholar
  197. Xu W, Dai W, Yan H, Li S, Shen H, Chen Y et al (2015) Arabidopsis NIP3; 1 plays an important role in arsenic uptake and root-to-shoot translocation under arsenite stress conditions. Mol Plant 8:722–733PubMedCrossRefPubMedCentralGoogle Scholar
  198. Xue T, Hartikainen H, Piironen V (2001) Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant and Soil 237:55–61CrossRefGoogle Scholar
  199. Yamagishi M, Yamamoto Y (1994) Effects of boron on nodule development and symbiotic nitrogen fixation in soybean plants. Soil Sci Plant Nutr 40:265–274CrossRefGoogle Scholar
  200. Yokosho K, Yamaji N, Ueno D, Mitani N, Ma JF (2009) OsFRDL1 is a citrate transporter required for efficient translocation of iron in rice. Plant Physiol 149:297–305PubMedPubMedCentralCrossRefGoogle Scholar
  201. Zeyen RJ, Kruger WM, Lyngkjær MF, Carver TLW (2002) Differential effects of D -mannose and 2-deoxy- D -glucose on attempted powdery mildew fungal infection of inappropriate and appropriate Gramineae. Physiol Mol Plant Pathol 61:315–323CrossRefGoogle Scholar
  202. Zhang Y, Pan G, Chen J, Hu Q (2003) Uptake and transport of selenite and selenate by soybean seedlings of two genotypes. Plant and Soil 253:437–443CrossRefGoogle Scholar
  203. Zhang LH, Shi WM, Wang XC (2006) Difference in selenite absorption between high-and low-selenium rice cultivars and its mechanism. Plant and Soil 282:183–193CrossRefGoogle Scholar
  204. Zhang L, Hu B, Li W, Che R, Deng K, Li H et al (2014a) OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytol 201:1183–1191PubMedCrossRefPubMedCentralGoogle Scholar
  205. Zhang M, Tang S, Huang X, Zhang F, Pang Y, Huang Q et al (2014b) Selenium uptake, dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). Environ Exp Bot 107:39–45CrossRefGoogle Scholar
  206. Zhao FJ, McGrath SP, Meharg AA (2010a) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559PubMedCrossRefPubMedCentralGoogle Scholar
  207. Zhao XQ, Mitani N, Yamaji N, Shen RF, Ma JF (2010b) Transporter OsNIP2;1 in selenite uptake in rice. Plant Physiol 153:1871–1877PubMedPubMedCentralCrossRefGoogle Scholar
  208. Zohaib A, Tabassum T, Jabbar A, Anjum SA, Abbas T, Mehmood A et al (2018) Author correction: effect of plant density, boron nutrition and growth regulation on seed mass, emergence and offspring growth plasticity in cotton. Sci Rep 8:10489PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Priyanka Dhakate
    • 1
  • Prateek Sharma
    • 2
    • 3
  • Sahil Mehta
    • 4
  • Javed Akter
    • 5
  • Vacha Bhatt
    • 6
  • Sonali Chandanshive
    • 6
  • Dhiresh Chakravarty
    • 7
  • Mehzabin Rahman
    • 8
  • Md. Aminul Islam
    • 1
  1. 1.National Institute of Plant Genome ResearchAruna Asaf Ali MargNew DelhiIndia
  2. 2.Department of BiologyUniversity of North CarolinaChapel HillUSA
  3. 3.CSIR-National Botanical Research Institute (CSIR-NBRI)Rana Pratap MargLucknowIndia
  4. 4.Crop Improvement Group, International Centre for Genetic Engineering and BiotechnologyAruna Asaf Ali MargNew DelhiIndia
  5. 5.Soybean Research InstituteNanjing Agricultural UniversityNanjingPeople’s Republic of China
  6. 6.Department of BotanySavitribai Phule Pune UniversityPuneIndia
  7. 7.Department of ChemistryBimala Prasad Chaliha CollegeNagarberaIndia
  8. 8.Advanced IBT HubBimala Prasad Chaliha CollegeNagarberaIndia

Personalised recommendations