Advertisement

Omics Technologies for Abiotic Stress Tolerance in Plants: Current Status and Prospects

  • Sahil Mehta
  • Donald James
  • M. K. Reddy
Chapter

Abstract

Plants are widely considered as the primary source for sustaining life on earth. As plants are sessile by nature, they are continuously exposed to many environmental stresses at various stages of their life. These abiotic stresses include salinity, drought, flooding, extreme temperatures, heavy metal stress, pollutants, and nutrient deprivation. Abiotic stresses have detrimental effects on growth, vigor and development, and severely limit the productivity of crops worldwide. This is mainly due to the several imbalances that occur at the cellular, molecular, physiological, and developmental levels in plants during such conditions. However, plants are seen to adapt or acclimatize themselves by modulating or making changes at the genome, transcriptome, proteome, miRNAome, lipidome, secretome, and/or metabolomic levels. In the post-genome era, our knowledge and understanding of these adaptations at the various omics levels have taken a tremendous leap due to the advancements in the technologies used to decipher them. All these approaches have contributed remarkably in furthering our understanding of the effects of abiotic stresses and the adaptations which plants undertake to mitigate them. In this chapter, we summarize the advancements in the major omics technologies employed in plant abiotic stress research.

Keywords

Plant abiotic stresses Omics Metabolomics Primeomics miRNAomics Secretomics Lipidomics 

References

  1. AbdElgawad H, Zinta G, Hegab MM, Pandey R, Asard H, Abuelsoud W (2015) High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Front Plant Sci 7:276Google Scholar
  2. Afzal I, Butt A, Rehman HU, Basra SMA, Afzal A (2012) Alleviation of salt stress in fine aromatic rice by seed priming. Aust J Crop Sci 6:1401Google Scholar
  3. Agarwal P, Parida SK, Mahto A et al (2014) Expanding frontiers in plant transcriptomics in aid of functional genomics and molecular breeding. Biotechnol J 9:1480–1492PubMedCrossRefGoogle Scholar
  4. Ahsan N, Nakamura T, Komatsu S (2012) Differential responses of microsomal proteins and metabolites in two contrasting cadmium (Cd) accumulating soybean cultivars under Cd stress. Amino Acids 42(1):317–327PubMedCrossRefGoogle Scholar
  5. Akbari G, Sanavy SA, Yousefzadeh S (2007) Effect of auxin and salt stress (NaCl) on seed germination of wheat cultivars (Triticum aestivum L.). Pak J Biol Sci 10:2557–2561PubMedCrossRefGoogle Scholar
  6. Akçay N, Bor M, Karabudak T, Özdemir F, Türkan I (2012) Contribution of Gamma amino butyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and wild type plants. J Plant Physiol 169:452–458.  https://doi.org/10.1016/j.jplph.2011.11.006CrossRefPubMedGoogle Scholar
  7. Alcázar R, Bitrián M, Bartels D, Koncz C, Altabella T, Tiburcio AF (2014) Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum. Plant Signal Behav 6:243–250.  https://doi.org/10.4161/psb.6.2.14317CrossRefGoogle Scholar
  8. Alter S, Bader KC, Spannagl M, Wang Y, Bauer E, Schön CC, Mayer KF (2015) DroughtDB: an expert-curated compilation of plant drought stress genes and their homologs in nine species. Database 2015:bav046PubMedPubMedCentralCrossRefGoogle Scholar
  9. Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM et al (2009) Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics 9(9):2419–2431PubMedCrossRefGoogle Scholar
  10. Alves M, Moes S, Jeno P, Pinheiro C, Passarinho J et al (2011) The analysis of Lupinus albus root proteome revealed cytoskeleton altered features due to long-term boron deficiency. J Proteome 74(8):1351–1363CrossRefGoogle Scholar
  11. Amiour N, Imbaud S, Clement G, Agier N, Zivy M et al (2012) The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism in crops such as maize. J Exp Bot 63(14):5017–5033PubMedCrossRefGoogle Scholar
  12. Anosheh HP, Sadeghi H, Emam Y (2011) Chemical priming with urea and KNO3 enhances maize hybrids (Zea mays L.) seed viability under abiotic stress. J Crop Sci Biotechnol 14(4):289–295CrossRefGoogle Scholar
  13. Araujo WL, Ishizaki K, Nesi AN, Tohge T, Larson TR et al (2011) Analysis of a range of catabolic mutants provides evidence that phytanoyl-coenzyme A does not act as a substrate of the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone-oxidoreductase complex in Arabidopsis during dark-induced senescence. Plant Physiol 157(1):55–69PubMedPubMedCentralCrossRefGoogle Scholar
  14. Arentz G, Weiland F, Oehler MK, Hoffmann P (2014) State of the art of 2D DIGE. Proteomics Clin Appl 9:277–288CrossRefGoogle Scholar
  15. Armengaud J (2010) Proteogenomics and systems biology: quest for the ultimate missing parts. Expert Rev Proteomics 7:65–77PubMedCrossRefGoogle Scholar
  16. Baerenfaller K, Grossmann J, Grobei MA et al (2008) Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science 320:938–941PubMedCrossRefGoogle Scholar
  17. Bajwa AA, Farooq M, Nawaz A (2018) Seed priming with sorghum extracts and benzyl aminopurine improves the tolerance against salt stress in wheat (Triticum aestivum L.). Physiol Mol Biol Plants 24(2):239–249PubMedPubMedCentralCrossRefGoogle Scholar
  18. Balmer A, Pastor V, Gamir J, Flors V, Mauch-Mani B (2015) The ‘prime-ome’: towards a holistic approach to priming. Trends Plant Sci 20(7):443–452PubMedCrossRefGoogle Scholar
  19. Begum MC, Islam MS, Monirul Islam RA, Parvez AH, Kabir MS (2016) Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.). Plant Physiol Biochem.  https://doi.org/10.1016/j.toxicon.2008.05.012PubMedCrossRefGoogle Scholar
  20. Bolser D, Staines DM, Pritchard E, Kersey P (2016) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. Methods Mol Biol 1374:115–140PubMedCrossRefGoogle Scholar
  21. Borkotoky S, Saravanan V, Jaiswal A et al (2013) The Arabidopsis stress responsive gene database. Int J Plant Genomics 2013:949564PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bottino MC, Rosario S, Grativol C, Thiebaut F, Rojas CA, Farrineli L et al (2013) High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane. PLoS One 8:e59423.  https://doi.org/10.1371/journal.pone.0059423CrossRefGoogle Scholar
  23. Bowne JB, Erwin TA, Juttner J, Schnurbusch T, Langridge P et al (2012) Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol Plant 5(2):418–429PubMedCrossRefGoogle Scholar
  24. Burgos A, Szymanski J, Seiwert B, Degenkolbe T, Hannah MA, Giavalisco P et al (2011) Analysis of short-term changes in the Arabidopsis thaliana glycerolipidome in response to temperature and light. Plant J 66:656–668PubMedCrossRefGoogle Scholar
  25. Caldana C, Degenkolbe T, Inostroza AC, Klie S, Sulpice R et al (2011) High-density kinetic analysis of the metabolomic and transcriptomic response of Arabidopsis to eight environmental conditions. Plant J 67(5):869–884PubMedPubMedCentralCrossRefGoogle Scholar
  26. Carreno-Quintero N, Bouwmeester HJ, Keurentjes JJB (2013) Genetic analysis of metabolome-phenotype interactions: from model to crop species. Trends Genet 29:41–50.  https://doi.org/10.1016/j.tig.2012.09.006CrossRefPubMedGoogle Scholar
  27. Castellana NE, Payne SH, Shen Z et al (2008) Discovery and revision of Arabidopsis genes by proteogenomics. Proc Natl Acad Sci U S A 105:21034–21038PubMedPubMedCentralCrossRefGoogle Scholar
  28. Castellana NE, Shen Z, He Y et al (2014) An automated proteogenomic method uses mass spectrometry to reveal novel genes in Zea mays. Mol Cell Proteomics 13:157–167PubMedCrossRefGoogle Scholar
  29. Chaouiya C (2012) Logical modelling of gene regulatory networks with GINsim. Methods Mol Biol 804:463–479PubMedCrossRefGoogle Scholar
  30. Chapman B, Bellgard M (2017) Plant proteogenomics: improvements to the grapevine genome annotation. Proteomics 17(21):1700197CrossRefGoogle Scholar
  31. Chauhan N, Kumar VH (2016) Gender responsive climate change strategies for sustainable development. Productivity 57(2):182Google Scholar
  32. Chebrolu KK, Fritschi FB, Ye S, Krishnan HB, Smith JR, Gillman JD (2016) Impact of heat stress during seed development on soybean seed metabolome. Metabolomics 12:1–14.  https://doi.org/10.1007/s11306-015-0941-1CrossRefGoogle Scholar
  33. Chen Y, Hoehenwarter W (2015) Changes in the phosphoproteome and metabolome link early signaling events to rearrangement of photosynthesis and central metabolism in salinity and oxidative stress response in Arabidopsis. Plant Physiol 169:3021–3033PubMedPubMedCentralCrossRefGoogle Scholar
  34. Chen M, Thelen JJ (2013) ACYL-LIPID DESATURASE2 is required for chilling and freezing tolerance in Arabidopsis. Plant Cell 25:1430–1444PubMedPubMedCentralCrossRefGoogle Scholar
  35. Chen S, Jiang J, Li H, Liu G (2012) The salt-responsive transcriptome of Populus simonii × Populus nigra via DGE. Gene 504:203–212PubMedCrossRefGoogle Scholar
  36. Cheng H, Deng W, Wang Y et al (2014) dbPPT: a comprehensive database of protein phosphorylation in plants. Database 2014:bau121PubMedPubMedCentralCrossRefGoogle Scholar
  37. Cheng HY, Wang Y, Tao X, Fan YF, Dai Y, Yang H, Ma XR (2016) Genomic profiling of exogenous abscisic acid-responsive microRNAs in tomato (Solanum lycopersicum). BMC Genomics 17(1):423PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cheng J, Wang L, Zeng P, He Y, Zhou R, Zhang H, Wang Z (2017) Identification of genes involved in rice seed priming in the early imbibition stage. Plant Biol 19:61–69PubMedCrossRefGoogle Scholar
  39. Cokkizgin H, Bolek Y (2015) Priming treatments for improvement of germination and emergence of cotton seeds at low temperature. Plant Breed Seed Sci 71:121–134CrossRefGoogle Scholar
  40. Collino S, Martin FP, Rezzi S (2013) Clinical metabolomics paves the way towards future healthcare strategies. Br J Clin Pharmacol 75:619–629.  https://doi.org/10.1111/j.1365-2125.2012.04216.xCrossRefPubMedPubMedCentralGoogle Scholar
  41. Colmsee C, Mascher M, Czauderna T, Hartmann A, Schluter U et al (2012) OPTIMAS-DW: a comprehensive transcriptomics, metabolomics, ionomics, proteomics and phenomics data resource for maize. BMC Plant Biol 12:245PubMedPubMedCentralCrossRefGoogle Scholar
  42. Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci U S A 101:15243–15248PubMedPubMedCentralCrossRefGoogle Scholar
  43. Cooper L, Jaiswal P (2016) The plant ontology: a tool for plant genomics. In: Plant bioinformatics. Humana, New York, NY, pp 89–114CrossRefGoogle Scholar
  44. Cui N, Sun X, Sun M, Jia B, Duanmu H, Lv D, Duan X, Zhu Y (2015) Overexpression of OsmiR156k leads to reduced tolerance to cold stress in rice (Oryza Sativa). Mol Breed 35(11):214CrossRefGoogle Scholar
  45. Cusido RM, Onrubia M, Sabater-Jara AB, Moyano E, Bonfill M, Goossens A (2014) A rational approach to improving the biotechnological production of taxanes in plant cell cultures of Taxus spp. Biotechnol Advt 32:1157–1167.  https://doi.org/10.1016/j.biotechadv.2014.03.002CrossRefGoogle Scholar
  46. Cvikrová M, Gemperlová L, Dobrá J, Martincová O, Prásil IT, Gubis J, Vanková R (2012) Effect of heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Sci 182:49–58.  https://doi.org/10.1016/j.plantsci.2011.01.016CrossRefPubMedGoogle Scholar
  47. D’Agostino PM, Song X, Neilan BA, Moffitt MC (2016) Proteogenomics of a saxitoxin-producing and non-toxic strain of Anabaena circinalis (cyanobacteria) in response to extracellular NaCl and phosphate depletion. Environ Microbiol 18(2):461–476PubMedCrossRefGoogle Scholar
  48. Dang TN, Murray P, Forbes AG (2015) PathwayMatrix: visualizing binary relationships between proteins in biological pathways. In: BMC proceedings, vol 9(6). BioMed Central, London, p S3Google Scholar
  49. de Miguel M, Guevara MÁ, Sánchez-Gómez D, de María N, Díaz LM, Mancha JA (2016) Organ-specific metabolic responses to drought in Pinus pinaster Ait. Plant Physiol Biochem 102:17–26.  https://doi.org/10.1016/j.plaphy.2016.02.013CrossRefPubMedGoogle Scholar
  50. Deborde C, Jacob D (2014) MeRy-B, a metabolomic database and knowledge base for exploring plant primary metabolism. Methods Mol Biol 1083:3–16PubMedCrossRefGoogle Scholar
  51. Degenkolbe T, Giavalisco P, Zuther E, Seiwert B, Hincha DK, Willmitzer L (2012) Differential remodelling of the lipidome during cold acclimation in natural accessions of Arabidopsis thaliana. Plant J 72:972–982.  https://doi.org/10.1111/tpj.12007CrossRefPubMedGoogle Scholar
  52. Dos Santos VS, Macedo FA, do Vale JS, Silva DB, Carollo CA (2017) Metabolomics as a tool for understanding the evolution of Tabebuia sensu lato. Metabolomics 13:72CrossRefGoogle Scholar
  53. Dubery I, Tugizimana F, Piater L, Dubery I (2013) Plant metabolomics: a new frontier in phytochemical analysis. S Afr J Sci 109:1–11.  https://doi.org/10.1590/sajs.2013/20120005CrossRefGoogle Scholar
  54. Duque AS, de Almeida AM, da Silva AB, da Silva JM et al (2013) Abiotic stress—plant responses and applications in agriculture. Intech, Rijeka, Croatia.  https://doi.org/10.5772/45842CrossRefGoogle Scholar
  55. Duressa D, Soliman K, Taylor R, Senwo Z (2011) Proteomic analysis of soybean roots under aluminum stress international. Int J Plant Genomics 2011:282531PubMedPubMedCentralCrossRefGoogle Scholar
  56. El-Metwally S, Hamza T, Zakaria M, Helmy M (2013) Next-generation sequence assembly: four stages of data processing and computational challenges. PLoS Comput Biol 9:e1003345.  https://doi.org/10.1371/journal.pcbi.1003345CrossRefPubMedPubMedCentralGoogle Scholar
  57. El-Metwally S, Ouda OM, Helmy M (2014a) First- and next-generations sequencing methods. Next Gener Seq Technol Challenges Seq Assem.  https://doi.org/10.1007/978-1-4939-0715-1_3CrossRefGoogle Scholar
  58. El-Metwally S, Ouda OM, Helmy M (2014b) Novel next-generation sequencing applications. Next Gener Seq Technol Challenges Seq Assem.  https://doi.org/10.1007/978-1-4939-0715-1_7CrossRefGoogle Scholar
  59. Esmaeili F, Shiran B, Fallahi H, Mirakhorli N, Budak H, Martínez-Gómez P (2017) In silico search and biological validation of microRNAs related to drought response in peach and almond. Funct Integr Genomics 17(2–3):189–201PubMedCrossRefGoogle Scholar
  60. Falda M, Toppo S, Pescarolo A et al (2012) Argot2: a large scale function prediction tool relying on semantic similarity of weighted Gene Ontology terms. BMC Bioinformatics 13(Suppl 4):S14.  https://doi.org/10.1186/1471-2105-13-S4-S14CrossRefPubMedPubMedCentralGoogle Scholar
  61. Foti R, Aburenia K, Tigerea A, Gotosab J, Gerec J (2008) The efficacy of different seed priming osmotica on the establishment of maize (Zea mays L.) caryopses. J Arid Environ 72:1127–1130CrossRefGoogle Scholar
  62. Franceschini A, Szklarczyk D, Frankild S et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815PubMedCrossRefGoogle Scholar
  63. Franz M, Lopes CT, Huck G, Dong Y, Sumer O, Bader GD (2016) Cytoscape.js: a graph theory library for visualisation and analysis. Bioinformatics 32(2):309–311PubMedGoogle Scholar
  64. Freese NH, Norris DC, Loraine AE (2016) Integrated genome browser: visual analytics platform for genomics. Bioinformatics 32(14):2089–2095PubMedPubMedCentralCrossRefGoogle Scholar
  65. Freund DM, Hegeman AD (2017) Recent advances in stable isotope-enabled mass spectrometry-based plant metabolomics. Curr Opin Biotechnol 43:41–48.  https://doi.org/10.1016/j.copbio.2016.08.002CrossRefPubMedGoogle Scholar
  66. Genga A, Mattana M, Coraggio I (2011) Plant metabolomics: a characterization of plant responses to abiotic stresses. In: Abiotic stress plants - mechanisms and adaptations. Intech, Rijeka, Croatia, pp 1–43.  https://doi.org/10.5772/23844CrossRefGoogle Scholar
  67. Gentile A, Dias LI, Mattos RS, Ferreira TH, Menossi M (2015) MicroRNAs and drought responses in sugarcane. FrontPlant Sci 6:58.  https://doi.org/10.3389/fpls.2015.00058CrossRefGoogle Scholar
  68. Gill SS, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5:26–33PubMedPubMedCentralCrossRefGoogle Scholar
  69. Gilliham M, Able JA, Roy SJ (2017) Translating knowledge about abiotic stress tolerance to breeding programmes. Plant J 90(5):898–917PubMedCrossRefGoogle Scholar
  70. Govind G, Harshavardhan VT, Patricia JK et al (2009) Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut. Mol Gen Genomics 281:607CrossRefGoogle Scholar
  71. Griesser M, Weingart G, Schoedl-Hummel K, Neumann N, Becker M, Varmuza K (2015) Severe drought stress is affecting selected primary metabolites, polyphenols, and volatile metabolites in grapevine leaves (Vitis vinifera cv. Pinot noir). Plant Physiol Biochem 88:17–26.  https://doi.org/10.1016/j.plaphy.2015.01.004CrossRefPubMedGoogle Scholar
  72. Guan YJ, Jin HU, Wang XJ, Shao CX (2009) Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Zhejiang Univ Sci B 10(6):427–433CrossRefGoogle Scholar
  73. Gupta N, Singh A, Zahra S, Kumar S (2018) PtRFdb: a database for plant transfer RNA-derived fragments. Database (Oxford).  https://doi.org/10.1093/database/bay063
  74. Gu Z, Eils R, Schlesner M (2016) HilbertCurve: an R/Bioconductor package for high-resolution visualization of genomic data. Bioinformatics 32(15):2372–2374PubMedCrossRefPubMedCentralGoogle Scholar
  75. Hajyzadeh M, Turktas M, Khawar KM, Unver T (2015) miR408 overexpression causes increased drought tolerance in chickpea. Gene 555(2):186–193PubMedCrossRefGoogle Scholar
  76. He P, Zhao P, Wang L, Zhang Y, Wang X, Xiao H, Yu J, Xiao G (2017) The PIN gene family in cotton (Gossypium hirsutum): genome-wide identification and gene expression analyses during root development and abiotic stress responses. BMC Genomics 18(1):507PubMedPubMedCentralCrossRefGoogle Scholar
  77. Heidarv L, Amiri MR (2013) Physio-biochemical and proteome analysis of chickpea in early phases of cold stress. J Plant Physiol 170(5):459–469CrossRefGoogle Scholar
  78. Helmy M, Tomita M, Ishihama Y (2011) OryzaPG-DB: rice proteome database based on shotgun proteogenomics. BMC Plant Biol 11:63.  https://doi.org/10.1186/1471-2229-11-63CrossRefPubMedPubMedCentralGoogle Scholar
  79. Helmy M, Sugiyama N, Tomita M, Ishihama Y (2012) Mass spectrum sequential subtraction speeds up searching large peptide MS/MS spectra datasets against large nucleotide databases for proteogenomics. Cell Mech 17:633–644.  https://doi.org/10.1111/j.1365-2443.2012.01615.xCrossRefGoogle Scholar
  80. Helmy M, Crits-Christoph A, Bader GD et al (2016) Ten simple rules for developing public biological databases. PLoS Comput Biol 12:e1005128PubMedPubMedCentralCrossRefGoogle Scholar
  81. Henry VJ, Bandrowski AE, Pepin A-S et al (2014) OMICtools: an informative directory for multi-omic data analysis. Database (Oxford) 2014:bau069CrossRefGoogle Scholar
  82. Hernandez Y, Sanan-Mishra N (2017) miRNA mediated regulation of NAC transcription factors in plant development and environment stress response. Plant Gene 11:190–198CrossRefGoogle Scholar
  83. Hewezi T, Leger M, Gentzbittel L (2008) A comprehensive analysis of the combined effects of high light and high temperature stresses on gene expression in sunflower. Ann Bot 102:127–140PubMedPubMedCentralCrossRefGoogle Scholar
  84. Hivrale V, Zheng Y, Puli COR, Jagadeeswaran G, Gowdu K, Kakani VG, Barakat A, Sunkar R (2016) Characterization of drought- and heat-responsive microRNAs in switchgrass. Plant Sci 242:214–223PubMedCrossRefGoogle Scholar
  85. Higashi Y, Okazaki Y, Myouga F, Shinozaki K, Saito K (2015) Landscape of the lipidome and transcriptome under heat stress in Arabidopsis thaliana. Sci Rep 5:10533PubMedPubMedCentralCrossRefGoogle Scholar
  86. Hopff D, Wienkoop S, Lüthje S (2013) The plasma membrane proteome of maize roots grown under low and high iron conditions. J Proteome 91:605–618CrossRefGoogle Scholar
  87. Hossain Z, Hajika M, Komatsu S (2012) Comparative proteome analysis of high and low cadmium accumulating soybeans under cadmium stress. Amino Acids 43(6):2393–2416PubMedCrossRefGoogle Scholar
  88. Hradilova J, Rehulka P, Rehulkova H, Vrbova M, Griga M et al (2010) Comparative analysis of proteomic changes in contrasting flax cultivars upon cadmium exposure. Electrophoresis 31(2):421–431PubMedCrossRefGoogle Scholar
  89. Huang XY, Salt DE (2016) Plant ionomics: from elemental profiling to environmental adaptation. Mol Plant 9(6):787–797PubMedCrossRefGoogle Scholar
  90. Hussain I, Ahmad R, Farooq M, Wahid A (2013) Seed priming improves the performance of poor quality wheat seed. Int J Agric Biol 15:1343–1348Google Scholar
  91. Hussain S, Yin H, Peng S, Faheem A, Khan FA, Khan F, Sameeullah M, Hussain HA, Huang J, Kehui Cui K, Nie L (2016) Comparative transcriptional profiling of primed and non-primed rice seedlings under submergence stress. Front Plant Sci 7:1125PubMedPubMedCentralGoogle Scholar
  92. Iyer NJ, Tang Y, Mahalingam R (2013) Physiological, biochemical and molecular responses to a combination of drought and ozone in Medicago truncatula. Plant Cell Environ 36:706–720PubMedCrossRefGoogle Scholar
  93. Jain D, Chattopadhyay D (2010) Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. BMC Plant Biol 10:24PubMedPubMedCentralCrossRefGoogle Scholar
  94. Jaiswal DK, Mishra P, Subba P, Rathi D, Chakraborty S et al (2014) Membrane-associated proteomics of chickpea identifies Sad1/UNC-84 protein (CaSUN1), a novel component of dehydration signaling. Sci Rep 4:4177PubMedPubMedCentralCrossRefGoogle Scholar
  95. Jakab G, Ton J, Flors V, Zimmerli L, Metraux JP, Mauch-Mani B (2005) Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol 139:267–274PubMedPubMedCentralCrossRefGoogle Scholar
  96. Jian H, Jia Wang J, Wang T, Wei L, Li J, Liu L (2016) Identification of rapeseed micro RNAs involved in early stage seed germination under salt and drought stresses. Front Plant Sci 7:658PubMedPubMedCentralGoogle Scholar
  97. Jogaiah S, Govind SR, Tran L-SP (2013) Systems biology-based approaches toward understanding drought tolerance in food crops. Crit Rev Biotechnol 33:23–39PubMedCrossRefGoogle Scholar
  98. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799PubMedCrossRefPubMedCentralGoogle Scholar
  99. Joshi V, Joung JG, Fei Z, Jander G (2010) Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids 39(4):933–947PubMedCrossRefGoogle Scholar
  100. Jung S, Main D (2014) Genomics and bioinformatics resources for translational science in Rosaceae. Plant Biotechnol Rep 8:49–64.  https://doi.org/10.1007/s11816-013-0282-3CrossRefPubMedGoogle Scholar
  101. Juntawong P, Girke T, Bazin J, Bailey-Serres J (2014) Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis. Proc Natl Acad Sci U S A 111(1):E203–E212PubMedCrossRefGoogle Scholar
  102. Khaksefidi RE, Mirlohi S, Khalaji F, Fakhari Z, Shiran B, Fallahi H, Rafiei F, Budak H, Ebrahimie E (2015) Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus. Front Plant Sci 6:741Google Scholar
  103. Khan N, Bano A, Rahman MA, Rathinasabapathi B, Babar MA (2018) UPLC-HRMS-based untargeted metabolic profiling reveals changes in chickpea (Cicer arietinum) metabolome following long-term drought stress. Plant Cell Environ 42(1):115–132CrossRefGoogle Scholar
  104. Kim HK, Choi YH, Verpoorte R (2010) NMR-based metabolomic analysis of plants. Nat Protoc 5:536–549.  https://doi.org/10.1038/nprot.2009.237CrossRefPubMedGoogle Scholar
  105. Komatsu S, Kamal AHM, Hossain Z (2014) Wheat proteomics: proteome modulation and abiotic stress acclimation. Front Plant Sci 5:684PubMedPubMedCentralCrossRefGoogle Scholar
  106. Kosmala A, Perlikowski D, Pawłowicz I, Rapacz M (2012) Changes in the chloroplast proteome following water deficit and subsequent watering in a high- and a low-drought-tolerant genotype of Festuca arundinacea. J Exp Bot 63:6161–6172.  https://doi.org/10.1093/jxb/ers265CrossRefPubMedGoogle Scholar
  107. Kosmides AK, Kamisoglu K, Calvano SE, Corbett SA, Androulakis IP (2013) Metabolomic fingerprinting: challenges and opportunities. Crit Rev Biotechnol 41:205–221Google Scholar
  108. Kosová K, Vítámvás P, Urban MO, Prášil IT, Renaut J (2018) Plant abiotic stress proteomics: the major factors determining alterations in cellular proteome. Front Plant Sci 9:122PubMedPubMedCentralCrossRefGoogle Scholar
  109. Koussevitzky S, Suzuki N, Huntington S, Armijo L, Sha W, Cortes D, Shulaev V, Mittler R (2008) Ascorbate peroxidase 1 plays a key role in the response of Arabidopsis thaliana to stress combination. J Biol Chem 283:34197–34203PubMedPubMedCentralCrossRefGoogle Scholar
  110. Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73CrossRefGoogle Scholar
  111. Krause C, Richter S, Knoll C, Jurgens G (2013) Plant secretome from cellular process to biological activity. Biochim Biophys Acta.  https://doi.org/10.1016/j.bbapap.2013.03.024CrossRefGoogle Scholar
  112. Kreszies T, Shellakkutti N, Osthoff A, Yu P, Baldauf JA, Zeisler-Diehl VV, Ranathunge K, Hochholdinger F, Schreiber L (2018) Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses. New Phytol 221(1):180–194PubMedPubMedCentralCrossRefGoogle Scholar
  113. Kumar SA, Kumari PH, Sundararajan VS, Suravajhala P, Kanagasabai R, Kishor PK (2014) PSPDB: plant stress protein database. Plant Mol Biol Report 32:940–942CrossRefGoogle Scholar
  114. Kumar M, Kuzhiumparambil U, Pernice M, Jiang Z, Ralph Peter J (2016) Metabolomics: an emerging frontier of systems biology in marine macrophytes. Algal Res 16:76–92.  https://doi.org/10.1016/j.algal.2016.02.033CrossRefGoogle Scholar
  115. Kusano M, Tohge T, Fukushima A, Kobayashi M, Hayashi N et al (2011) Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. Plant J 67(2):354–369PubMedPubMedCentralCrossRefGoogle Scholar
  116. Kwon SJ, Choi EY, Choi YJ, Ahn JH, Park OK (2006) Proteomics studies of post-translational modifications in plants. J Exp Bot 57(7):1547–1551PubMedCrossRefPubMedCentralGoogle Scholar
  117. Lafitte HR, Yongsheng G, Yan S, Li ZK (2007) Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J Exp Bot 58:169–175.  https://doi.org/10.1093/jxb/erl101CrossRefPubMedPubMedCentralGoogle Scholar
  118. Lakshmanan V, Ray P, Craven KD (2017) Rhizosphere sampling protocols for microbiome (16S/18S/ITS rRNA) library preparation and enrichment for the isolation of drought tolerance-promoting microbes. In: Plant stress tolerance. Humana, New York, NY, pp 349–362CrossRefGoogle Scholar
  119. Lal SK, Kumar S, Sheri V, Mehta S, Varakumar P, Ram B, Borphukan B, James D, Fartyal D, Reddy MK (2018) Seed priming: an emerging technology to impart abiotic stress tolerance in crop plants. In: Advances in seed priming. Springer, Singapore, pp 41–50CrossRefGoogle Scholar
  120. Lanzinger A, Frank T, Reichenberger G, Herz M, Engel KH (2015) Metabolite profiling of barley grain subjected to induced drought stress: responses of free amino acids in differently adapted cultivars. J Agric Food Chem 63:4252–4261.  https://doi.org/10.1021/acs.jafc.5b01114CrossRefPubMedPubMedCentralGoogle Scholar
  121. Lassowskat I, Böttcher C, Eschen-Lippold L et al (2014) Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana. Front Plant Sci 5:554PubMedPubMedCentralCrossRefGoogle Scholar
  122. Latowski D, Kuczyńska P, Strzałka K (2011) Xanthophyll cycle—a mechanism protecting plants against oxidative stress. Red Rep 16:78–90.  https://doi.org/10.1179/174329211X13020951739938CrossRefGoogle Scholar
  123. Le DT, Nishiyama R, Watanabe Y et al (2012) Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis. PLoS One 7:e49522PubMedPubMedCentralCrossRefGoogle Scholar
  124. Leisner CP, Yendrek CR, Ainsworth EA (2017) Physiological and transcriptomic responses in the seed coat of field-grown soybean (Glycine max L. Merr.) to abiotic stress. BMC Plant Biol 17(1):242PubMedPubMedCentralCrossRefGoogle Scholar
  125. Li M, Welti R, Wang X (2006) Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation. Roles of phospholipases D zeta1 and D zeta2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorus-starved plants. Plant Physiol 142:750–761PubMedPubMedCentralCrossRefGoogle Scholar
  126. Li YF, Wang Y, Tang Y, Kakani VG, Mahalingam R (2013) Transcriptome analysis of heat stress response in switchgrass (Panicum virgatum L.). BMC Plant Biol 13:153PubMedPubMedCentralCrossRefGoogle Scholar
  127. Li K, Wang X, Pidatala VR, Chang C-P, Cao X (2014) Novel quantitative metabolomic approach for the study of stress responses of plant root metabolism. J Proteome Res 13:5879–5887.  https://doi.org/10.1021/pr5007813CrossRefPubMedPubMedCentralGoogle Scholar
  128. Li SB, Xie ZZ, Hu CG, Zhang JZ (2016) A review of auxin response factors (ARFs) in plants. Front Plant Sci 7:46Google Scholar
  129. Li P, Cao W, Fang H, Xu S, Yin S, Zhang Y, Lin D, Wang J, Chen Y, Xu C, Yang Z (2017) Transcriptomic profiling of the maize (Zea mays L.) leaf response to abiotic stresses at the seedling stage. Front Plant Sci 8:290PubMedPubMedCentralGoogle Scholar
  130. Liu B, Zhang N, Zhao S et al (2015) Proteomic changes during tuber dormancy release process revealed by iTRAQ quantitative proteomics in potato. Plant Physiol Biochem 86:181–190PubMedCrossRefGoogle Scholar
  131. Liu Y, Tian T, Zhang K, You Q, Yan H, Zhao N, Yi X, Xu W, Zhen S (2018) PCSD: a plant chromatin state database. Nucleic Acids Res 46:D1157–D1167PubMedCrossRefPubMedCentralGoogle Scholar
  132. Lopes CT, Franz M et al (2010) Cytoscape Web: an interactive web-based network browser. Bioinformatics 26(18):2347–2348PubMedPubMedCentralCrossRefGoogle Scholar
  133. Luan H, Shen H, Pan Y, Guo B, Lv C, Xu R (2018) Elucidating the hypoxic stress response in barley (Hordeum vulgare L.) during waterlogging: a proteomics approach. Sci Rep 8(1):9655PubMedPubMedCentralCrossRefGoogle Scholar
  134. Luengwilai K, Saltveit M, Beckles DM (2012) Metabolite content of harvested Micro-Tom tomato (Solanum lycopersicum L.) fruit is altered by chilling and protective heat-shock treatments as shown by GC–MS metabolic profiling. Postharvest Biol Technol 63:116–122.  https://doi.org/10.1016/j.postharvbio.2011.05.014CrossRefGoogle Scholar
  135. Manivasagaperumal R, Balamurugan S, Thiyagarajan G, Sekar J (2011) Effect of zinc on germination, seedling growth and biochemical content of cluster bean (Cyamopsis tetragonoloba (L.) Taub). Curr Bot 2:11–15Google Scholar
  136. Mao G, Seebeck T, Schrenker D, Yu O (2013) CYP709B3, a cytochrome P450 monooxygenase gene involved in salt tolerance in Arabidopsis thaliana. BMC Plant Biol 13:169PubMedPubMedCentralCrossRefGoogle Scholar
  137. Maruyama K, Urano K, Yoshiwara K, Morishita Y, Sakurai N, Suzuki H (2014) Integrated analysis of the effects of cold and dehydration on rice metabolites, phytohormones, and gene transcripts. Plant Physiol 164:1759–1771.  https://doi.org/10.1104/pp.113.231720CrossRefPubMedPubMedCentralGoogle Scholar
  138. McDowall MD, Scott MS, Barton GJ (2009) PIPs: human protein-protein interaction prediction database. Nucleic Acids Res 37:D651–D656PubMedCrossRefPubMedCentralGoogle Scholar
  139. Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51:497–523.  https://doi.org/10.1093/pcp/pcq027CrossRefPubMedPubMedCentralGoogle Scholar
  140. Mochida K, Shinozaki K (2011) Advances in omics and bioinformatics tools for systems analyses of plant functions. Plant Cell Physiol 52:2017–2038PubMedPubMedCentralCrossRefGoogle Scholar
  141. Molina C, Rotter B, Horres R, Udupa SM, Besser B et al (2008) SuperSAGE: the drought stress responsive transcriptome of chickpea roots. BMC Genomics 9:553PubMedPubMedCentralCrossRefGoogle Scholar
  142. Molina C, Zaman-Allah M, Khan F, Fatnassi N, Horres R et al (2011) The salt-responsive transcriptome of chickpea roots and nodules via deepSuperSAGE. BMC Plant Biol 11:31PubMedPubMedCentralCrossRefGoogle Scholar
  143. Moradi P, Mahdavi A, Khoshkam M, Iriti M (2017) Lipidomics unravels the role of leaf lipids in thyme plant response to drought stress. Int J Mol Sci 18(10):2067PubMedCentralCrossRefGoogle Scholar
  144. Mosa KA, Ismail A, Helmy M (2017) Omics and system biology approaches in plant stress research. In: Plant stress tolerance. Springer, Cham, pp 21–34CrossRefGoogle Scholar
  145. Mousavi SA, Pouya FM, Ghaffari MR, Mirzaei M, Ghaffari A, Alikhani M, Ghareyazie M, Komatsu S, Haynes PA, Salekdeh GH (2016) PlantPReS: a database for plant proteome response to stress. J Proteome 143:69–72CrossRefGoogle Scholar
  146. Mueller SP, Krause DM, Mueller MJ, Fekete A (2015) Accumulation of extra-chloroplastic triacylglycerols in Arabidopsis seedlings during heat acclimation. J Exp Bot 66:4517–4526PubMedPubMedCentralCrossRefGoogle Scholar
  147. Muscolo A, Junker A, Klukas C, Weigelt-Fischer K, Riewe D, Altmann T (2015) Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. J Exp Bot.  https://doi.org/10.1093/jxb/erv208PubMedPubMedCentralCrossRefGoogle Scholar
  148. Mustafa HSB, Mahmood T, Ullah A, Sharif A, Bhatti AN, Muhammad Nadeem M, Ali R (2017) Role of seed priming to enhance growth and development of crop plants against biotic and abiotic stresses. Bull Biol Allied Sci Res 2:1–11Google Scholar
  149. Muthuramalingam P, Krishnan SR, Pothiraj R, Ramesh M (2017) Global transcriptome analysis of combined abiotic stress signaling genes unravels key players in Oryza sativa L.: an in silico approach. Front Plant Sci 8:759PubMedPubMedCentralCrossRefGoogle Scholar
  150. Muthuramalingam P, Krishnan SR, Pandian S, Mareeswaran N, Aruni W, Pandian SK, Ramesh M (2018) Global analysis of threonine metabolism genes unravel key players in rice to improve the abiotic stress tolerance. Sci Rep 8(1):9270PubMedPubMedCentralCrossRefGoogle Scholar
  151. Muthusamy SK, Dalal M, Chinnusamy V, Bansal KC (2017) Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. J Plant Physiol 211:100–113PubMedCrossRefPubMedCentralGoogle Scholar
  152. Naika M, Shameer K, Mathew OK et al (2013) STIFDB2: an updated version of plant stress-responsive transcription factor database with additional stress signals, stress-responsive transcription factor binding sites and stress-responsive genes in Arabidopsis and rice. Plant Cell Physiol 54:e8PubMedPubMedCentralCrossRefGoogle Scholar
  153. Nakabayashi R, Mori T, Saito K (2014) Alternation of flavonoid accumulation under drought stress in Arabidopsis thaliana. Plant Signal Behav 9:e29518PubMedPubMedCentralCrossRefGoogle Scholar
  154. Nakagami H, Sugiyama N, Ishihama Y, Shirasu K (2012) Shotguns in the front line: phosphoproteomics in plants. Plant Cell Physiol 53:118–124PubMedCrossRefPubMedCentralGoogle Scholar
  155. Narayanan S, Tamura PJ, Roth MR, Prasad PV, Welti R (2016a) Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations. Plant Cell Environ 39:787–803PubMedPubMedCentralCrossRefGoogle Scholar
  156. Narayanan S, Prasad PVV, Welti R (2016b) Wheat leaf lipids during heat stress: II. Lipids experiencing coordinated metabolism are detected by analysis of lipid co-occurrence. Plant Cell Environ 39:608–617PubMedCrossRefPubMedCentralGoogle Scholar
  157. Natera SH, Hill CB, Rupasinghe TW, Roessner U (2016) Salt-stress induced alterations in the root lipidome of two barley genotypes with contrasting responses to salinity. Funct Plant Biol 43(2):207–219CrossRefGoogle Scholar
  158. Neugart S, Angelika K, Zrenner R (2016) Influence of light and temperature on gene expression leading to accumulation of specific flavonol glycosides and hydroxycinnamic acid derivatives in Kale (Brassica oleracea var. sabellica). Front Plant Sci 7.  https://doi.org/10.3389/fpls.2016.00326
  159. Ni J, Yang X, Zhu J, Liu Z, Ni Y, Wu H (2015) Salinity-induced metabolic profile changes in Nitraria tangutorum Bobr. suspension cells. Plant Cell Tissue Organ Cult 122:239–248.  https://doi.org/10.1007/s11240-015-0744-0CrossRefGoogle Scholar
  160. Obata T, Fernie AR (2012) The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci 69(19):3225–3243PubMedPubMedCentralCrossRefGoogle Scholar
  161. Okem A, Stirk WA, Street RA, Southway C, Finnie JF, Van Staden J (2015) Effects of Cd and Al stress on secondary metabolites, antioxidant and antibacterial activity of Hypoxis hemerocallidea Fisch. & C.A. Mey. Plant Physiol Biochem 97:147–155.  https://doi.org/10.1016/j.plaphy.2015.09.015CrossRefPubMedPubMedCentralGoogle Scholar
  162. Orozco A, Morera J, Jiménez S, Boza R (2013) A review of bioinformatics training applied to research in molecular medicine, agriculture and biodiversity in Costa Rica and Central America. Brief Bioinform 14:661–670PubMedCrossRefGoogle Scholar
  163. Pal R, Rai JPN (2010) Phytochelatins: peptides involved in heavy metal detoxification. Appl Biochem Biotechnol 160:945–963.  https://doi.org/10.1007/s12010-009-8565-4CrossRefPubMedPubMedCentralGoogle Scholar
  164. Pandey A, Rajamani U, Verma J, Subba P, Chakraborty N, Datta A et al (2010) Identification of extracellular matrix proteins of rice (Oryza sativa L.) involved in dehydration-responsive network: a proteomic approach. J Proteome Res 9:3443–3464.  https://doi.org/10.1021/pr901098pCrossRefPubMedGoogle Scholar
  165. Pang Q, Zhang A, Zang W, Wei L, Yan X (2016) Integrated proteomics and metabolomics for dissecting the mechanism of global responses to salt and alkali stress in Suaeda corniculata. Plant Soil 402:379–394.  https://doi.org/10.1007/s11104-015-2774-0CrossRefGoogle Scholar
  166. Pant BD, Burgos A, Pant P, Cuadros-Inostroza A, Willmitzer L, Scheible W-R (2015) The transcription factor PHR1 regulates lipid remodeling and triacylglycerol accumulation in Arabidopsis thaliana during phosphorus starvation. J Exp Bot 66:1907–1918PubMedPubMedCentralCrossRefGoogle Scholar
  167. Parida AK, Panda A, Rangani J (2018) Metabolomics-guided elucidation of abiotic stress tolerance mechanisms in plants. In: Plant metabolites and regulation under environmental stress. Academic, San Diego, CA, pp 89–131CrossRefGoogle Scholar
  168. Patade VY, Sujata B, Suprasanna P (2009) Halopriming imparts tolerance to salt and PEG induced drought stress in sugarcane. Agric Ecosyst Environ 134:24–28CrossRefGoogle Scholar
  169. Pires MV, Pereira Júnior AA, Medeiros DB, Daloso DM, Pham PA, Barros KA, Engqvist MK, Florian A, Krahnert I, Maurino VG et al (2016) The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis. Plant Cell Environ 39:1304–1319PubMedCrossRefPubMedCentralGoogle Scholar
  170. Prasch CM, Sonnewald U (2013) Simultaneous application of heat, drought, and virus to Arabidopsis plants reveals significant shifts in signaling networks. Plant Physiol 162:1849–1866PubMedPubMedCentralCrossRefGoogle Scholar
  171. Priya P, Jain M (2013a) RiceSRTFDB: a database of rice transcription factors containing comprehensive expression, cis-regulatory element and mutant information to facilitate gene function analysis. Database (Oxford) 2013:bat027CrossRefGoogle Scholar
  172. Priya P, Jain M (2013b) RiceSRTFDB: a database of rice transcription factors containing comprehensive expression, cis-regulatory element and mutant information to facilitate gene function analysis. Database 2013:bat027PubMedPubMedCentralCrossRefGoogle Scholar
  173. Qiu Z, Hai B, Guo J, Li Y, Zhang L (2016) Characterization of wheat miRNAs and their target genes responsive to cadmium stress. Plant Physiol Biochem 101:60–67PubMedCrossRefPubMedCentralGoogle Scholar
  174. Ramegowda V, Senthil-kumar M, Udayakumar M, Mysore KS (2013) A high-throughput virus-induced gene silencing protocol identifies genes involved in multi-stress tolerance. BMC Plant Biol 13:193.  https://doi.org/10.1186/1471-2229-13-193CrossRefPubMedPubMedCentralGoogle Scholar
  175. Ramegowda V, Mysore KS, Senthil-Kumar M (2014) Virus-induced gene silencing is a versatile tool for unraveling the functional relevance of multiple abiotic-stress-responsive genes in crop plants. Front Plant Sci 5:323.  https://doi.org/10.3389/fpls.2014.00323CrossRefPubMedPubMedCentralGoogle Scholar
  176. Raney J, Reynolds D, Elzinga D, Page J, Udall JA et al (2014) Transcriptome analysis of drought induced stress in Chenopodium quinoa. Am J Plant Sci 5(3):338–357CrossRefGoogle Scholar
  177. Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, Bones AM, Nielsen HB, Mundy J (2013) Transcriptome responses to combinations of stresses in Arabidopsis. Plant Physiol 161:1783–1794PubMedPubMedCentralCrossRefGoogle Scholar
  178. Reyes LF, Cisneros-Zevallos L (2007) Electron-beam ionizing radiation stress affects on mango fruit (Mangifera indica L.) antioxidant constituents before and during post harvest storage. J Agric Food Chem 55:6132–6139PubMedCrossRefGoogle Scholar
  179. Risk BA, Spitzer WJ, Giddings MC (2013) Peppy: proteogenomic search software. J Proteome Res 12:3019–3025PubMedPubMedCentralCrossRefGoogle Scholar
  180. Rivero RM, Mestre TC, Mittler R, Rubio F, Garcia-Sanchez F, Martinez V (2014) The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ 37:1059–1073.  https://doi.org/10.1111/pce.12199CrossRefPubMedGoogle Scholar
  181. Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol 134:1683–1696PubMedPubMedCentralCrossRefGoogle Scholar
  182. Roy S (2016) Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signal Behav 11(1):e1117723CrossRefGoogle Scholar
  183. Ruan MB, Guo X, Wang B, Yang YL, Li WQ, Yu XL, Zhang P, Peng M (2017) Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava (Manihot esculenta). J Exp Bot 68(13):3657–3672PubMedCrossRefGoogle Scholar
  184. Saha P, Chatterjee P, Biswas AK (2010) NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mung bean (Vigna radiata L. Wilczek). Indian J Exp Biol 48:593–600PubMedGoogle Scholar
  185. Sali A, Rusinovci I, Fetahu S, Gashi B, Simeonovska E, Rozman L (2015) The effect of salt stress on the germination of maize (Zea mays L.) seeds and photosynthetic pigments. Acta Agric Slovenica 105:85–94CrossRefGoogle Scholar
  186. Santisree P, Bhatnagar-Mathur P, Sharma KK (2017) The leaf proteome signatures provide molecular insights into the abiotic stress tolerance in chickpea: a priming and proteomics approach. In: National Conference on molecular insights in genetics and biotechnology-emerging trends and future prospects, 27–28 February 2017, Osmania University, HyderabadGoogle Scholar
  187. Semane B, Dupae J, Cuypers A, Noben JP, Tuomainen M et al (2010) Leaf proteome responses of Arabidopsis thaliana exposed to mild cadmium stress. J Plant Physiol 167(4):247–254PubMedCrossRefGoogle Scholar
  188. Shabbir I, Ayub M, Tahir M, Bilal M, Tanveer A, Hussain M, Afzal M (2014) Impact of priming techniques on emergence and seedling growth of sesame (sesamum indicum l.) Genotypes. Scientia 1:92–96Google Scholar
  189. Shankar A, Singh A, Kanwar P et al (2013) Gene expression analysis of rice seedling under potassium deprivation reveals major changes in metabolism and signaling components. PLoS One 8:e70321PubMedPubMedCentralCrossRefGoogle Scholar
  190. Shao S, Guo T, Aebersold R (2014) Mass spectrometry-based proteomic quest for diabetes biomarkers. Biochim Biophys Acta.  https://doi.org/10.1016/j.bbapap.2014.12.012CrossRefGoogle Scholar
  191. Sharma N, Mittal D, Mishra NS (2017) Micro-regulators of hormones and stress. In: Mechanism of plant hormone signaling under stress. Wiley, New York, pp 319–351CrossRefGoogle Scholar
  192. Sharmin SA, Alam I, Kim KH, Kim YG, Kim PJ et al (2012) Chromium-induced physiological and proteomic alterations in roots of Miscanthus sinensis. Plant Sci 187:113–126PubMedCrossRefGoogle Scholar
  193. Shen Y, Shen L, Shen Z, Jing W, Ge H, Zhao J, Zhang W (2015) The potassium transporter O s HAK 21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environ 38(12):2766–2779PubMedCrossRefPubMedCentralGoogle Scholar
  194. Shen Q, Fu L, Dai F, Jiang L, Zhang G, Wu D (2016) Multi-omics analysis reveals molecular mechanisms of shoot adaption to salt stress in Tibetan wild barley. BMC Genomics 17:889PubMedPubMedCentralCrossRefGoogle Scholar
  195. Shen W, Li H, Teng R, Wang Y, Wang W, Zhuang J (2018) Genomic and transcriptomic analyses of HD-Zip family transcription factors and their responses to abiotic stress in tea plant (Camellia sinensis). Genomics.  https://doi.org/10.1016/j.ygeno.2018.07.009
  196. Shi H, Ye T, Song B, Qi X, Chan Z (2015) Comparative physiological and metabolomic responses of four Brachypodium distachyon varieties contrasting in drought stress resistance. Acta Physiol Plant 37:1–12.  https://doi.org/10.1007/s11738-015-1873-0CrossRefGoogle Scholar
  197. Shin H, Oh S, Kim K, Kim D (2016) Proline accumulates in response to higher temperatures during dehardening in peach shoot tissues. Hortic J 85(1):37–45CrossRefGoogle Scholar
  198. Singh B, Mehta S, Tiwari M, Bhatia S (2018) Legume breeding for fungal resistance: a lesson to learn in molecular approaches for plant improvement. Kalpaz Publication, New Delhi. ISBN: 9789386397829Google Scholar
  199. Skirycz A, De Bodt S, Obata T, De Clercq I, Claeys H et al (2010) Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress. Plant Physiol 152(1):226–244PubMedPubMedCentralCrossRefGoogle Scholar
  200. Smalter Hall A, Shan Y, Lushington G, Visvanathan M (2013) An overview of computational life science databases & exchange formats of relevance to chemical biology research. Comb Chem High Throughput Screen 16:189–198PubMedCrossRefGoogle Scholar
  201. Smita S, Lenka SK, Katiyar A et al (2011) QlicRice: a web interface for abiotic stress responsive QTL and loci interaction channels in rice. Database (Oxford) 2011:bar037CrossRefGoogle Scholar
  202. Sobhanian H, Motamed N, Jazii FR, Nakamura T, Komatsu S (2010) Salt stress induced differential proteome and metabolome response in the shoots of Aeluropus lagopoides (Poaceae), a halophyte C4 plant. J Proteome Res 9:2882–2897.  https://doi.org/10.1021/pr900974kCrossRefPubMedGoogle Scholar
  203. Soda N, Wallace S, Karan R (2015) Omics study for abiotic stress responses in plants. Adv Plants Agric Res 2(1):00037.  https://doi.org/10.15406/apar.2015.02.00037CrossRefGoogle Scholar
  204. Song G, Zhang R, Zhang S, Li Y, Gao J, Han X, Chen M, Wang J, Li W, Li G (2017) Response of microRNAs to cold treatment in the young spikes of common wheat. BMC Genomics 18(1):212PubMedPubMedCentralCrossRefGoogle Scholar
  205. Spicher L, Glauser G, Kessler F (2016) Lipid antioxidant and galactolipid remodeling under temperature stress in tomato plants. Front Plant Sci 7:167PubMedPubMedCentralCrossRefGoogle Scholar
  206. Srivastava AK, Lokhande VH, Patade VY, Suprasanna P, Sjahril R, D’Souza SF (2010a) Comparative evaluation of hydro-, chemo-, and hormonal priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassica juncea L.). Acta Physiol Plant 32(1135):1144Google Scholar
  207. Srivastava AK, Suprasanna P, Srivastava S, D’Souza SF (2010b) Thiourea mediated regulation in the expression profile of aquaporins and its impact on water homeostasis under salinity stress in Brassica juncea roots. Plant Sci 178:517–522CrossRefGoogle Scholar
  208. Srivastava V, Obudulu O, Bygdell J, Lofstedt T, Ryden P et al (2013) OnPLS integration of transcriptomic, proteomic and metabolomic data shows multi-level oxidative stress responses in the cambium of transgenic hipI-superoxide dismutase Populus plants. BMC Genomics 14:893PubMedPubMedCentralCrossRefGoogle Scholar
  209. Stief A, Altmann S, Hoffmann K, Pant BD, Scheible WR, Bäurle I (2014) Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors. Plant Cell 26:1792–1807PubMedPubMedCentralCrossRefGoogle Scholar
  210. Subba P, Kumar R, Gayali S, Shekhar S, Parveen S (2013) Characterization of the nuclear proteome of a dehydration-sensitive cultivar of chickpea and comparative proteomic analysis with a tolerant cultivar. Proteomics 13(12–13):1973–1992PubMedCrossRefGoogle Scholar
  211. Sun X, Xu L, Wang Y, Yu R, Zhu X, Luo X, Gong Y, Wang R, Limera C, Zhang K (2015) Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.). BMC Genomics 16(1):197PubMedPubMedCentralCrossRefGoogle Scholar
  212. Sun CX, Li MQ, Gao XX, Liu LN, Wu XF, Zhou JH (2016a) Metabolic response of maize plants to multi-factorial abiotic stresses. Plant Biol 18(1):120–129PubMedCrossRefGoogle Scholar
  213. Sun C, Gao X, Chen X, Fu J, Zhang Y (2016b) Metabolic and growth responses of maize to successive drought and re-watering cycles. Agric Water Manag 172:62–73.  https://doi.org/10.1016/j.agwat.2016.04.016CrossRefGoogle Scholar
  214. Sung J, Lee S, Lee Y, Ha S, Song B, Kim T (2015) Metabolomic profiling from leaves and roots of tomato (Solanum lycopersicum L.) plants grown under nitrogen, phosphorus or potassium-deficient condition. Plant Sci 241:55–64.  https://doi.org/10.1016/j.plantsci.2015.09.027CrossRefPubMedGoogle Scholar
  215. Sussman MR, Huttlin EL, Wohlbach DJ (2009) Democratization and integration of genomic profiling tools. Methods Mol Biol 553:373–393.  https://doi.org/10.1007/978-1-60327-563-7_20CrossRefPubMedGoogle Scholar
  216. Sytar O, Kumar A, Latowski D, Kuczynska P, Strzałka K, Prasad MNV (2013) Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35:985–999.  https://doi.org/10.1007/s11738-012-1169-6CrossRefGoogle Scholar
  217. Szymanski J, Brotman Y, Willmitzer L, Cuadros-Inostroza A (2014) Linking gene expression and membrane lipid composition of Arabidopsis. Plant Cell 26:915–928PubMedPubMedCentralCrossRefGoogle Scholar
  218. Tamburino R, Vitale M, Ruggiero A, Sassi M, Sannino L, Arena S et al (2017) Chloroplast proteome response to drought stress and recovery in tomato (Solanum lycopersicum L.). BMC Plant Biol 17:40.  https://doi.org/10.1186/s12870-017-0971-0CrossRefPubMedPubMedCentralGoogle Scholar
  219. Tanou G, Job C, Rajjou L, Arc E, Belghazi M et al (2009) Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J 60(5):795–804PubMedCrossRefGoogle Scholar
  220. Tarazona P, Feussner K, Feussner I (2015) An enhanced plant lipidomics method based on multiplexed liquid chromatography–mass spectrometry reveals additional insights into cold- and drought-induced membrane remodeling. Plant J 84(3):621–633PubMedCrossRefGoogle Scholar
  221. Thiry AA, Chavez Dulanto PN, Reynolds MP, Davies WJ (2016) How can we improve crop genotypes to increase stress resilience and productivity in a future climate? A new crop screening method based on productivity and resistance to abiotic stress. J Exp Bot 67(19):5593–5603PubMedPubMedCentralCrossRefGoogle Scholar
  222. Tyers M, Mann M (2003) From genomics to proteomics. Nature 422:193–197PubMedCrossRefGoogle Scholar
  223. Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M et al (2009) Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J 57(6):1065–1078CrossRefGoogle Scholar
  224. Urban MO, Vašek J, Klíma M, Krtková J, Kosová K, Prášil IT et al (2017) Proteomic and physiological approach reveals drought-induced changes in rapeseeds: water-saver and water-spender strategy. J Proteome 152:188–205.  https://doi.org/10.1016/j.jprot.2016.11.004CrossRefGoogle Scholar
  225. Vandereyken K, Hulsmans S, Broeckx T, Van Leene J, Rolland F, De Jaeger G, De Coninck B, Cammue B (2017) The Arabidopsis thaliana LSU peptides: using an interactomics-based approach to unravel their role in the plant stress response. Centre of Microbial and Plant Genetics, KU LeuvenGoogle Scholar
  226. Verslues PE, Juenger TE (2011) Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Curr Opin Plant Biol 14(3):240–245PubMedPubMedCentralCrossRefGoogle Scholar
  227. Vidal M (2009) A unifying view of 21st century systems biology. FEBS Lett 583(24):3891–3894.  https://doi.org/10.1016/j.febslet.2009.11.024CrossRefPubMedGoogle Scholar
  228. Vu HS, Shiva S, Roth MR, Tamura P, Zheng L, Li M et al (2014) Lipid changes after leaf wounding in Arabidopsis thaliana: expanded lipidomic data form the basis for lipid co-occurrence analysis. Plant J 80:728–743PubMedCrossRefGoogle Scholar
  229. Wahid A, Perveen M, Gelani S, Shahzad MA, Basra SMA (2007) Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J Plant Physiol 164:283–294PubMedCrossRefGoogle Scholar
  230. Wang R, Fabregat A, Ríos D et al (2012) PRIDE Inspector: a tool to visualize and validate MS proteomics data. Nat Biotechnol 30:135–137PubMedPubMedCentralCrossRefGoogle Scholar
  231. Wang R, Gao F, Guo BQ, Huang JC, Wang L et al (2013) Short-term chromium-stress-induced alterations in the maize leaf proteome. Int J Mol Sci 14(6):11125–11144PubMedPubMedCentralCrossRefGoogle Scholar
  232. Wang H, Tang X, Wang H, Shao H-B (2015) Proline accumulation and metabolism-related genes expression profiles in Kosteletzkya virginica seedlings under salt stress. Front Plant Sci 6:792PubMedPubMedCentralGoogle Scholar
  233. Wang YS, Yao HY, Xue HW (2016a) Lipidomic profiling analysis reveals the dynamics of phospholipid molecules in Arabidopsis thaliana seedling growth. J Integr Plant Biol 58(11):890–902PubMedCrossRefPubMedCentralGoogle Scholar
  234. Wang Q, Liu N, Yang X, Tu L, Zhang X (2016b) Small RNA-mediated responses to low-and high-temperature stresses in cotton. Sci Rep 6:35558PubMedPubMedCentralCrossRefGoogle Scholar
  235. Wang H, Wang H, Shao H, Tang X (2016c) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67PubMedPubMedCentralGoogle Scholar
  236. Wang P, Su L, Gao H, Jiang X, Wu X, Li Y, Zhang Q, Wang Y, Ren F (2018) Genome-wide characterization of bHLH genes in grape and analysis of their potential relevance to abiotic stress tolerance and secondary metabolite biosynthesis. Front Plant Sci 9:64PubMedPubMedCentralCrossRefGoogle Scholar
  237. Warren C, Aranda I, Cano F (2012) Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress. Metabolomics 8:186–200CrossRefGoogle Scholar
  238. Wenzel A, Frank T, Reichenberger G, Herz M, Engel KH (2015) Impact of induced drought stress on the metabolite profiles of barley grain. Metabolomics 11:454–467.  https://doi.org/10.1007/s11306-014-0708-0CrossRefGoogle Scholar
  239. Witt S, Galicia L, Lisec J, Cairns J, Tiessen A et al (2012) Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. Mol Plant 5(2):401–417PubMedCrossRefPubMedCentralGoogle Scholar
  240. Wolfender J-L, Rudaz S, Choi YH, Kim HK (2013) Plant metabolomics: from holistic data to relevant biomarkers. Curr MedChem 20:1056–1090Google Scholar
  241. Wu D, Cai S, Chen M, Ye L, Chen Z, Zhang H (2013) Tissue metabolic responses to salt stress in wild and cultivated barley. PLoS One:8, e55431.  https://doi.org/10.1371/journal.pone.0055431PubMedPubMedCentralCrossRefGoogle Scholar
  242. Wu X, Gong F, Cao D, Hu X, Wang W (2016) Advances in crop proteomics: PTMs of proteins under abiotic stress. Proteomics 16:847–865.  https://doi.org/10.1002/pmic.201500301CrossRefPubMedPubMedCentralGoogle Scholar
  243. Xie L-J, Chen Q-F, Chen M-X, Yu L-J, Huang L, Chen L et al (2015) Unsaturation of very-long-chain ceramides protects plant from hypoxia-induced damages by modulating ethylene signaling in Arabidopsis. PLoS Genet 11:e1005143PubMedPubMedCentralCrossRefGoogle Scholar
  244. Xiong L, Zhu JK (2002) Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ 25:131–139PubMedCrossRefGoogle Scholar
  245. Xu Y, Gao S, Yang Y, Huang M, Cheng L et al (2013) Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genomics 14:662PubMedPubMedCentralCrossRefGoogle Scholar
  246. Yachdav G, Kloppmann E, Kajan L et al (2014) PredictProtein—an open resource for online prediction of protein structural and functional features. Nucleic Acids Res 42:W337–W343PubMedPubMedCentralCrossRefGoogle Scholar
  247. Yan S, Du X, Wu F et al (2014) Proteomics insights into the basis of interspecific facilitation for maize (Zea mays) in faba bean (Vicia faba)/maize intercropping. J Proteome 109:111–124.  https://doi.org/10.1016/j.jprot.2014.06.027CrossRefGoogle Scholar
  248. Yang C, Li D, Mao D, Liu XUE, Ji C, Li X, Zhao X, Cheng Z, Chen C, Zhu L (2013a) Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.). Plant Cell Environ 36:2207–2218PubMedCrossRefPubMedCentralGoogle Scholar
  249. Yang W, Duan L, Chen G, Xiong L, Liu Q (2013b) Plant phenomics and high-throughput phenotyping: accelerating rice functional genomics using multidisciplinary technologies. Curr Opin Plant Biol 16:1–8CrossRefGoogle Scholar
  250. Yang D, Du X, Yang Z, Liang Z, Guo Z et al (2014) Transcriptomics, proteomics, and metabolomics to reveal mechanisms underlying plant secondary metabolism. Eng Life Sci 14(5):456–466CrossRefGoogle Scholar
  251. Yang A, Akhtar SS, Iqbal S, Qi Z, Alandia G, Saddiq MS, Jacobsen SE (2018) Saponin seed priming improves salt tolerance in quinoa. J Agron Crop Sci 204(1):31–39CrossRefGoogle Scholar
  252. Yanguez E, Castro-Sanz AB, Fernandez-Bautista N, Oliveros JC, Castellano MM (2013) Analysis of genome-wide changes in the translatome of Arabidopsis seedlings subjected to heat stress. PLoS One 8(8):e71425PubMedPubMedCentralCrossRefGoogle Scholar
  253. Yao D, Zhang X, Zhao X et al (2011) Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Genomics 98:47–55PubMedCrossRefPubMedCentralGoogle Scholar
  254. Yi X, Zhang Z, Ling Y, Xu W, Su Z (2015) PNRD: a plant non-coding RNA database. Nucleic Acids Res 43:D982–D989.  https://doi.org/10.1093/nar/gku1162CrossRefPubMedPubMedCentralGoogle Scholar
  255. Yin X, Komatsu S (2015) Quantitative proteomics of nuclear phosphoproteins in the root tip of soybean during the initial stages of flooding stress. J Proteome 119:183–195.  https://doi.org/10.1016/j.jprot.2015.02.004CrossRefGoogle Scholar
  256. Yin X, Komatsu S (2016) Nuclear proteomics reveals the role of protein synthesis and chromatin structure in root tip of soybean during the initial stage of flooding stress. J Proteome Res 15:2283–2298.  https://doi.org/10.1021/acs.jproteome.6b00330CrossRefPubMedPubMedCentralGoogle Scholar
  257. Yu J, Zhao M, Wang X et al (2013) Bolbase: a comprehensive genomics database for Brassica oleracea. BMC Genomics 14:664PubMedPubMedCentralCrossRefGoogle Scholar
  258. Zhang B (2015) MicroRNA: a new target for improving plant tolerance to abiotic stress. J Exp Bot 66(7):1749–1761PubMedPubMedCentralCrossRefGoogle Scholar
  259. Zhang J, Zhang Y, Du Y, Chen S, Tang H (2011) Dynamic metabolomic responses of tobacco (Nicotiana tabacum) plants to salt stress. J Proteome Res 10:1904–1914.  https://doi.org/10.1021/pr101140nCrossRefPubMedPubMedCentralGoogle Scholar
  260. Zhang M, Lv D, Ge P, Bian Y, Chen G, Zhu G et al (2014) Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). J Proteomics 109:290–308.  https://doi.org/10.1016/j.jprot.2014.07.010CrossRefPubMedPubMedCentralGoogle Scholar
  261. Zhang Y, Cheng Y, Guo J et al (2014a) Comparative transcriptome analysis to reveal genes involved in wheat hybrid necrosis. Int J Mol Sci 15:23332–23344.  https://doi.org/10.3390/ijms151223332CrossRefPubMedPubMedCentralGoogle Scholar
  262. Zhang M, Lv D, Ge P et al (2014b) Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). J Proteome 109:290–308.  https://doi.org/10.1016/j.jprot.2014.07.010CrossRefGoogle Scholar
  263. Zhang L, Li X, Ma B, Gao Q, Du H, Han Y, Li Y, Cao Y, Qi M, Zhu Y, Lu H (2017) The tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Mol Plant 10(9):1224–1237PubMedCrossRefPubMedCentralGoogle Scholar
  264. Zhang X, Yao C, Fu S, Xuan H, Wen S, Liu C, Li F, Liu A, Bi S, Zhang S, Li S (2018a) Stress2TF: a manually curated database of TF regulation in plant response to stress. Gene 638:36–40PubMedCrossRefPubMedCentralGoogle Scholar
  265. Zhang X, Xu Y, Huang B (2018b) Lipidomic reprogramming associated with drought stress priming-enhanced heat tolerance in tall fescue (Festuca arundinacea). Plant Cell Environ.  https://doi.org/10.1111/pce.13405CrossRefGoogle Scholar
  266. Zhao TJ, Liu Y, Yan YB, Feng F, Liu WQ, Zhou HM (2007) Identification of the amino acids crucial for the activities of drought responsive element binding factors (DREBs) of Brassica napus. FEBS Lett 581:3044–3050PubMedCrossRefPubMedCentralGoogle Scholar
  267. Zhao H, Yao W, Ouyang Y, Yang W, Wang G, Lian X, Xing Y, Chen L, Xie W (2014) RiceVarMap: a comprehensive database of rice genomic variations. Nucleic Acids Res 43(D1):D1018–D1022PubMedPubMedCentralCrossRefGoogle Scholar
  268. Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H (2013) Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 161:1375–1391PubMedPubMedCentralCrossRefGoogle Scholar
  269. Zhu YN, Shi DQ, Ruan MB, Zhang LL, Meng ZH et al (2013) Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.). PLoS One 8(11):e80218PubMedPubMedCentralCrossRefGoogle Scholar
  270. Zhu FY, Chen MX, Ye NH, Shi L, Ma KL, Yang JF, Cao YY, Zhang Y, Yoshida T, Fernie AR, Fan GY (2017) Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings. Plant J 91(3):518–533PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sahil Mehta
    • 1
  • Donald James
    • 1
    • 2
  • M. K. Reddy
    • 1
    • 2
  1. 1.Crop Improvement GroupInternational Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
  2. 2.Centre for Plant Biotechnology and Molecular BiologyKerala Agricultural UniversityThrissurIndia

Personalised recommendations