Advertisement

Cryopreservation of Sperm: Effects on Chromatin and Strategies to Prevent Them

  • Donatella PaoliEmail author
  • Marianna Pelloni
  • Andrea Lenzi
  • Francesco Lombardo
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1166)

Abstract

Cryopreservation is a technique that can keep sperm alive indefinitely, enabling the conservation of male fertility. It involves the cooling of semen samples and their storage at −196 °C in liquid nitrogen. At this temperature all metabolic processes are arrested. Sperm cryopreservation is of fundamental importance for patients undergoing medical or surgical treatments that could induce sterility, such as cancer patients about to undergo genotoxic chemotherapy or radiotherapy, as it offers these patients not only the hope of future fertility but also psychological support in dealing with the various stages of the treatment protocols.

Despite its importance for assisted reproduction technology (ART) and its success in terms of babies born, this procedure can cause cell damage and impaired sperm function. Various studies have evaluated the impact of cryopreservation on chromatin structure, albeit with contradictory results. Some, but not all, authors found significant sperm DNA damage after cryopreservation. However, studies attempting to explain the mechanisms involved in the aetiology of cryopreservation-induced DNA damage are still limited. Some reported an increase in sperm with activated caspases after cryopreservation, while others found an increase in the percentage of oxidative DNA damage. There is still little and contradictory information on the mechanism of the generation of DNA fragmentation after cryopreservation. A number of defensive strategies against cryoinjuries have been proposed in the last decade. Most studies focused on supplementing cryoprotectant medium with various antioxidant molecules, all aimed at minimising oxidative damage and thus improving sperm recovery. Despite the promising results, identification of the ideal antioxidant treatment method is still hampered by the heterogeneity of the studies, which describe the use of different antioxidant regimens at different concentrations or in different combinations. For this reason, additional studies are needed to further investigate the use of antioxidants, individually and in combination, in the cryopreservation of human sperm, to determine the most beneficial conditions for optimal sperm recovery and preservation of fertility.

Keywords

Semen cryopreservation Sperm DNA damage Male fertility preservation Antioxidant supplementation Cryoprotectant 

References

  1. Agarwal A, Majzoub A (2017) Role of antioxidants in assisted reproductive techniques. World J Mens Health 35:77–93PubMedPubMedCentralCrossRefGoogle Scholar
  2. Agarwal A, Said TM (2004) Carnitines and male infertility. Reprod Biomed Online 8:376–384PubMedCrossRefPubMedCentralGoogle Scholar
  3. Agarwal A, Nallella KP, Allamaneni SS, Said TM (2004) Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biomed Online 8:616–627PubMedCrossRefPubMedCentralGoogle Scholar
  4. Agarwal A, Gupta S, Sikka S (2006) The role of free radicals and antioxidants in reproduction. Curr Opin Obstet Gynecol 18:325–332PubMedCrossRefPubMedCentralGoogle Scholar
  5. Agarwal A, Durairajanayagam D, du Plessis SS (2014a) Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reprod Biol Endocrinol 24:112CrossRefGoogle Scholar
  6. Agarwal A, Virk G, Ong C, du Plessis SS (2014b) Effect of oxidative stress on male reproduction. World J Mens Health 32(1):17CrossRefGoogle Scholar
  7. Ahmadi S, Bashiri R, Ghadiri-Anari A, Nadjarzadeh A (2016) Antioxidant supplements and semen parameters: an evidence based review. Int J Reprod Biomed (Yazd) 14:729–736CrossRefGoogle Scholar
  8. Ahmed SD, Karira KA, Jagdesh, Ahsan S (2011) Role of L-carnitine in male infertility. J Pak Med Assoc 61:732–736PubMedGoogle Scholar
  9. Akmal M, Qadri JQ, Al-Waili NS, Thangal S, Haq A, Saloom KY (2006) Improvement in human semen quality after oral supplementation of vitamin C. J Med Food 9:440–442PubMedCrossRefGoogle Scholar
  10. Alahmar AT (2018) The effects of oral antioxidants on the semen of men with idiopathic oligoasthenoteratozoospermia. Clin Exp Reprod Med 45:57–66PubMedPubMedCentralCrossRefGoogle Scholar
  11. Amidi F, Pazhohan A, Shabani Nashtaei M, Khodarahmian M, Nekoonam S (2016) The role of antioxidants in sperm freezing: a review. Cell Tissue Bank 17:745–756PubMedCrossRefGoogle Scholar
  12. Amor H, Zeyad A, Alkhaled Y, Laqqan M, Saad A, Ben Ali H, Hammadeh ME (2018) Relationship between nuclear DNA fragmentation, mitochondrial DNA damage and standard sperm parameters in spermatozoa of fertile and sub-fertile men before and after freeze-thawing procedure. Andrologia 50:e12998PubMedCrossRefGoogle Scholar
  13. Arav A, Zeron Y, Leslie SB, Behboodi E, Anderson GB, Crowe JH (1996) Phase transition temperature and chilling sensitivity of bovine oocytes. Cryobiology 33:589–599PubMedCrossRefGoogle Scholar
  14. Ashrafi I, Kohram H, Ardabili FF (2013) Antioxidative effects of melatonin on kinetics, microscopic and oxidative parameters of cryopreserved bull spermatozoa. Anim Reprod Sci 139:25–30PubMedCrossRefGoogle Scholar
  15. Avdatek F, Yeni D, İnanç ME, Çil B, Tuncer BP, Türkmen R, Taşdemir U (2018) Supplementation of quercetin for advanced DNA integrity in bull semen cryopreservation. Andrologia, Feb 7Google Scholar
  16. Bailey JL, Bilodeau JF, Cormier N (2000) Semen cryopreservation in domestic animals: a damaging and capacitating phenomenon. J Androl 21:1–7PubMedGoogle Scholar
  17. Balercia G, Regoli F, Armeni T, Koverech A, Mantero F, Boscaro M (2005) Placebo-controlled double-blind randomized trial on the use of l-carnitine, l-acetylcarnitine, or combined l-carnitine and l-acetylcarnitine in men with idiopathic asthenozoospermia. Fertil Steril 84:662–671PubMedCrossRefGoogle Scholar
  18. Banihani S, Agarwal A, Sharma R, Bayachou M (2014) Cryoprotective effect of l-carnitine on motility, vitality and DNA oxidation of human spermatozoa. Andrologia 46:637–641PubMedCrossRefGoogle Scholar
  19. Behrman SJ, Sawada Y (1966) Heterologous and homologous insemination with human semen frozen and stored in a liquid-nitrogen refrigerator. Fertil Steril 17:457–466PubMedCrossRefGoogle Scholar
  20. Ben Abdallah F, Zribi N, Ammar-Keskes L (2011) Antioxidative potential of Quercetin against hydrogen peroxide induced oxidative stress in spermatozoa in vitro. Andrologia 43:261–265PubMedCrossRefGoogle Scholar
  21. Benoff S (1997) Carbohydrates and fertilization: an overview. Mol Hum Reprod 3:599–637PubMedCrossRefGoogle Scholar
  22. Bianchi PG, Manicardi GC, Bizzaro D, Bianchi U, Sakkas D (1993) Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa. Biol Reprod 49:1083–1088PubMedCrossRefGoogle Scholar
  23. Boots AW, Haenen GR, Bast A (2008) Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol 585:325–337PubMedCrossRefGoogle Scholar
  24. Borges E Jr, Rossi LM, Locambo de Freitas CV, Guilherme P, Bonetti TC, Iaconelli A, Pasqualotto FF (2007) Fertilization and pregnancy outcome after intracytoplasmic injection with fresh or cryopreserved ejaculated spermatozoa. Fertil Steril 87:316–320PubMedCrossRefGoogle Scholar
  25. Branco CS, Garcez ME, Pasqualotto FF, Erdtman B, Salvador M (2010) Resveratrol and ascorbic acid prevent DNA damage induced by cryopreservation in human semen. Cryobiology 60:235–237PubMedCrossRefGoogle Scholar
  26. Bui AD, Sharma R, Henkel R, Agarwal A (2018) Reactive oxygen species impact on sperm DNA and its role in male infertility. Andrologia 50:e13012PubMedCrossRefGoogle Scholar
  27. Bunge RG, Sherman JK (1953) Fertilizing capacity of frozen human spermatozoa. Nature 172:767–768PubMedCrossRefGoogle Scholar
  28. Bunge RG, Keettel WC, Sherman JK (1954) Clinical use of frozen semen: report of four cases. Fertil Steril 5:520–529PubMedCrossRefGoogle Scholar
  29. Chanapiwat P, Kaeoket K, Tummaruk P (2009) Effects of DHA-enriched hen egg yolk and L-cysteine supplementation on quality of cryopreserved boar semen. Asian J Androl 11:600–608PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chi HJ, Kim JH, Ryu CS, Lee JY, Park JS, Chung DY, Choi SY, Kim MH, Chun EK, Roh SI (2008) Protective effect of antioxidant supplementation in sperm-preparation medium against oxidative stress in human spermatozoa. Hum Reprod 23:1023–1028PubMedCrossRefGoogle Scholar
  31. Clarke GN, Liu DY, Baker HW (2003) Improved sperm cryopreservation using cold cryoprotectant. Reprod Fertil Dev 15:377–381PubMedCrossRefPubMedCentralGoogle Scholar
  32. Coyan K, Başpınar N, Bucak MN, Akalın PP (2011) Effects of cysteine and ergothioneine on post-thawed Merino ram sperm and biochemical parameters. Cryobiology 63:1–6PubMedCrossRefPubMedCentralGoogle Scholar
  33. Cross NL, Overstreet JW (1987) Glycoconjugates of the human sperm surface: distribution and alterations that accompany capacitation in vitro. Gamete Res 16:23–35PubMedCrossRefPubMedCentralGoogle Scholar
  34. Cyrus A, Kabir A, Goodarzi D, Moghimi M (2015) The effect of adjuvant vitamin C after varicocele surgery on sperm quality and quantity in infertile men: a double blind placebo controlled clinical trial. Int Braz J Urol 41:230–238PubMedPubMedCentralCrossRefGoogle Scholar
  35. De Paula TS, Bertolla RP, Spaine DM, Cunha MA, Schor N, Cedenho AP (2006) Effect of cryopreservation on sperm apoptotic deoxyribonucleic acid fragmentation in patients with oligozoospermia. Fertil Steril 86:597–600PubMedCrossRefPubMedCentralGoogle Scholar
  36. Di Santo M, Tarozzi N, Nadalini M, Borini A (2012) Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv Urol 2012:854837PubMedCrossRefPubMedCentralGoogle Scholar
  37. Donnelly ET, McClure N, Lewis SE (1999) The effect of ascorbate and alpha-tocopherol supplementation in vitro on DNA integrity and hydrogen peroxide-induced DNA damage in human spermatozoa. Mutagenesis 14:505–512PubMedCrossRefPubMedCentralGoogle Scholar
  38. Donnelly ET, Steele EK, McClure N, Lewis SE (2001a) Assessment of DNA integrity and morphology of ejaculated spermatozoa from fertile and infertile men before and after cryopreservation. Hum Reprod 16:1191–1199PubMedCrossRefPubMedCentralGoogle Scholar
  39. Donnelly ET, McClure N, Lewis SE (2001b) Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertil Steril 76:892–900PubMedCrossRefPubMedCentralGoogle Scholar
  40. Duru NK, Morshedi MS, Schuffner A, Oehninger S (2001) Cryopreservation-Thawing of fractionated human spermatozoa is associated with membrane phosphatidylserine externalization and not DNA fragmentation. J Androl 22:646–651PubMedGoogle Scholar
  41. Enomoto A, Wempe MF, Tsuchida H, Shin HJ, Cha SH, Anzai N, Goto A, Sakamoto A, Niwa T, Kanai Y, Anders MW, Endou H (2002) Molecular identification of a novel carnitine transporter specific to human testis. Insights into the mechanism of carnitine recognition. J Biol Chem 277:36262–36271PubMedCrossRefGoogle Scholar
  42. Eslamian G, Amirjannati N, Rashidkhani B, Sadeghi MR, Hekmatdoost A (2017) Nutrient patterns and asthenozoospermia: a case-control study. Andrologia 49:e12624CrossRefGoogle Scholar
  43. Espino J, Bejarano I, Ortiz A, Lozano GM, García JF, Pariente JA, Rodríguez AB (2010) Melatonin as a potential tool against oxidative damage and apoptosis in ejaculated human spermatozoa. Fertil Steril 94:1915–1917PubMedCrossRefGoogle Scholar
  44. Estrada E, Rodríguez-Gil JE, Rocha LG, Balasch S, Bonet S, Yeste M (2014) Supplementing cryopreservation media with reduced glutathione increases fertility and prolificacy of sows inseminated with frozen-thawed boar semen. Andrology 2:88–99PubMedCrossRefGoogle Scholar
  45. Fabbri R, Ciotti P, Di Tommaso B, Magrini O, Notarangelo L, Porcu E, Contro E, Venturosi S (2004) Tecniche di crioconservazione riproduttiva. Riv Ital Ostet Ginecol 3:33–41Google Scholar
  46. Fanaei H, Khayat S, Halvaei I, Ramezani V, Azizi Y, Kasaeian A, Mardaneh J, Parvizi MR, Akrami M (2014) Effects of ascorbic acid on sperm motility, viability, acrosome reaction and DNA integrity in teratozoospermic samples. Iranian J Reprod Med 12:103–110Google Scholar
  47. Gadea J, Molla M, Selles E, Marco MA, Garcia-Vazquez FA, Gardon JC (2011) Reduced glutathione content in human sperm is decreased after cryopreservation: effect of the addition of reduced glutathione to the freezing and thawing extenders. Cryobiology 62:40–46PubMedCrossRefGoogle Scholar
  48. Garcez ME, dos Santos Branco C, Lara LV, Pasqualotto FF, Salvador M (2010) Effects of resveratrol supplementation on cryopreservation medium of human semen. Fertil Steril 94:2118–2121PubMedCrossRefGoogle Scholar
  49. Gavella M, Lipovac V (2000) Antioxidative effect of melatonin on human spermatozoa. Arch Androl 44:23–27PubMedCrossRefGoogle Scholar
  50. Gavella M, Lipovac V (2013) Protective effects of exogenous gangliosides on ROS-induced changes in human spermatozoa. Asian J Androl 15:375–381PubMedPubMedCentralCrossRefGoogle Scholar
  51. Geva E, Bartoov B, Zabludovsky N, Lessing J, Lerner-Geva L, Amit A (1996) The effect of antioxidant treatment on human spermatozoa and fertilization rate in an in vitro fertilization program. Fertil Steril 66:430–434PubMedCrossRefGoogle Scholar
  52. Ghorbani M, Vatannejad A, Khodadadi I, Amiri I, Tavilani H (2016) Protective effects of glutathione supplementation against oxidative stress during cryopreservation of human spermatozoa. Cryo Letters 37:34–40PubMedGoogle Scholar
  53. Giaretta E, Estrada E, Bucci D, Spinaci M, Rodríguez-Gil JE, Yeste M (2015) Combining reduced glutathione and ascorbic acid has supplementary beneficial effects on boar sperm cryotolerance. Theriogenology 83:399–407PubMedCrossRefGoogle Scholar
  54. Giraud MN, Motta C, Boucher D, Grizard G (2000) Membrane fluidity predicts the outcome of cryopreservation of human spermatozoa. Hum Reprod 15:2160–2164PubMedCrossRefGoogle Scholar
  55. Gorczyca W, Traganos F, Jesionowska H, Darzynkiewicz Z (1993) Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res 207:202–205PubMedCrossRefGoogle Scholar
  56. Gosálvez J, Cortés-Gutierez E, López-Fernández C, Fernández JL, Caballero P, Nuñez R (2009) Sperm deoxyribonucleic acid fragmentation dynamics in fertile donors. Fertil Steril 92:170–173PubMedCrossRefGoogle Scholar
  57. Greco E, Romano S, Iacobelli M, Ferrero S, Baroni E, Minasi MG, Ubaldi F, Rienzi L, Tesarik J (2005a) ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum Reprod 20:2590–2594PubMedPubMedCentralCrossRefGoogle Scholar
  58. Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J (2005b) Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl 26:349–353PubMedPubMedCentralCrossRefGoogle Scholar
  59. Gülçin I (2006) Antioxidant and antiradical activities of L-carnitine. Life Sci 78:803–811PubMedCrossRefGoogle Scholar
  60. Halliwell B, Gutterridge J (1984) Lipid peroxidation, oxygen radicals, cell damage and antioxidant therapy. Lancet 231:1396–1397CrossRefGoogle Scholar
  61. Hammadeh ME, Askari AS, Georg T, Rosenbaum P, Schmidt W (1999) Effect of freeze-thawing procedure on chromatin stability, morphological alteration and membrane integrity of human spermatozoa in fertile and subfertile men. Int J Androl 22:155–162PubMedCrossRefGoogle Scholar
  62. Hardie DG, Hawley SA, Scott JW (2006) AMP-activated protein kinase – development of the energy sensor concept. J Physiol 574:7–15PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hezavehei M, Sharafi M, Kouchesfahani HM, Henkel R, Agarwal A, Esmaeili V, Shahverdi A (2018) Sperm cryopreservation: a review on current molecular cryobiology and advanced approaches. Reprod Biomed Online 37:327–339PubMedCrossRefGoogle Scholar
  64. Jenkins TG, Aston KI, Carrell DT (2011) Supplementation of cryomedium with ascorbic acid-2-glucoside (AA2G) improves human sperm post-thaw motility. Fertil Steril 95:2001–2004PubMedCrossRefGoogle Scholar
  65. Jeulin C, Soufir JC, Weber P, Laval-Martin D, Calvayrac R (1989) Catalase activity in human spermatozoa and seminal plasma. Gamete Res 24:185–196PubMedCrossRefGoogle Scholar
  66. Thachil JV, Jewett MAS (1981) Preservation techniques for human semen. Fertil Steril 35:546–548PubMedCrossRefGoogle Scholar
  67. Kalthur G, Adiga SK, Upadhya D, Rao S, Kumar P (2008) Effect of cryopreservation on sperm DNA integrity in patients with teratosperm. Fertil Steril 89:1723–1727PubMedCrossRefGoogle Scholar
  68. Kalthur G, Raj S, Thiyagarajan A, Kumar S, Kumar P, Adiga SK (2011) Vitamin E supplementation in semen-freezing medium improves the motility and protects sperm from freeze-thaw–induced DNA damage. Fertil Steril 95:1149–1151PubMedCrossRefGoogle Scholar
  69. Karimfar MH, Niazvand F, Haghani K, Ghafourian S, Shirazi R, Bakhtiyari S (2015) The protective effects of melatonin against cryopreservation induced oxidative stress in human sperm. Int J Immunopathol Pharmacol 28:69–76PubMedCrossRefGoogle Scholar
  70. Karow AM Jr (1974) Cryopreservation: pharmacological considerations. In: Karow AM, Abouna GJ, Humphries AL (eds) Organ preservation for transplantation. Little Brown, Boston, pp 86–107Google Scholar
  71. Kim TH, Yuh IS, Park IC, Cheong HT, Kim JT, Park JK, Yang BK (2014) Effects of quercetin and genistein on boar sperm characteristics and porcine IVF embryo developments. J Embrio Transfer 29:141–148CrossRefGoogle Scholar
  72. Kobori Y, Ota S, Sato R, Yagi H, Soh S, Arai G, Okada H (2014) Antioxidant cosupplementation therapy with vitamin C, vitamin E, and coenzyme Q10 in patients with oligoasthenozoospermia. Arch Ital Urol Androl 86:1–4PubMedCrossRefPubMedCentralGoogle Scholar
  73. Lassalle B, Testart J (1994) Human zona pellucida recognition associated with removal of sialic acid from human sperm surface. J Reprod Fertil 101:703–711PubMedCrossRefGoogle Scholar
  74. Lasso JL, Noiles EE, Alvarez JG, Storey BT (1994) Mechanism of superoxide dismutase loss from human sperm cells during cryopreservation. J Androl 15:255–265PubMedGoogle Scholar
  75. Lenzi A, Sgrò P, Salacone P (2004) A placebo-controlled double-blind randomized trial of the use of combined L-carnitine and L-acetylcarnitine treatment in men with asthenozoospermia. Fertil Steril 8:1578–1584CrossRefGoogle Scholar
  76. Li Z, Lin Q, Liu R, Xiao W, Liu W (2010) Protective effects of ascorbate and catalase on human spermatozoa during cryopreservation. J Androl 31:437–444PubMedCrossRefGoogle Scholar
  77. Lopes S, Sun JG, Jurisicova A, Meriano J, Casper RF (1998) Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil Steril 69:528–532PubMedCrossRefGoogle Scholar
  78. Lusignan MF, Li X, Herrero B, Delbes G, Chan PTK (2018) Effects of different cryopreservation methods on DNA integrity and sperm chromatin quality in men. Andrology 6:829CrossRefGoogle Scholar
  79. Mahadevan M, Trounson AO (1984) Effect of cooling, freezing and thawing rates and storage conditions on preservation of human spermatozoa. Andrologia 16:52–60PubMedCrossRefGoogle Scholar
  80. Majzoub A, Agarwal A (2018) Systematic review of antioxidant types and doses in male infertility: benefits on semen parameters, advanced sperm function, assisted reproduction and live-birth rate. Arab J Urol 16:113–124PubMedPubMedCentralCrossRefGoogle Scholar
  81. Martinez-Soto JC, De Dioshourcade J, Gutiérrez-Adán A, Landeras JL, Gadea J (2010) Effect of genistein supplementation of thawing medium on characteristics of frozen human spermatozoa. Asian J Androl 12:431–441PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physiol 247(3 Pt 1):C125–C142PubMedCrossRefGoogle Scholar
  83. Mazzilli F, Rossi T, Sabatini L, Pulcinelli FM, Rapone S, Dondero F, Gazzaniga PP (1995) Human sperm cryopreservation and reactive oxygen species (ROS) production. Acta Eur Fertil 26:145–148PubMedGoogle Scholar
  84. Meamar M, Zribi N, Cambi M, Tamburrino L, Marchiani S, Filimberti E, Fino MG, Biggeri A, Menezo Y, Forti G, Baldi E, Muratori M (2012) Sperm DNA fragmentation induced by cryopreservation: new insights and effect of a natural extract from Opuntia ficus-indica. Fertil Steril 98:326–333PubMedCrossRefGoogle Scholar
  85. Medeiros CM, Forell F, Oliveira AT, Rodrigues JL (2002) Current status of sperm cryopreservation: why isn’t it better? Theriogenology 57:327–344PubMedCrossRefGoogle Scholar
  86. Memon AA, Wahid H, Rosnina Y, Goh YM, Ebrahimi M, Nadia FM (2012) Effect of antioxidants on post thaw microscopic, oxidative stress parameter and fertility of Boer goat spermatozoa in Tris egg yolk glycerol extender. Anim Reprod Sci 136:55–60PubMedCrossRefGoogle Scholar
  87. Minaei MB, Barbarestani M, Nekoonam S, Abdolvahabi MA, Takzare N, Asadi MH, Hedayatpour A, Amidi F (2012) Effect of Trolox addition to cryopreservation media on human sperm motility. Iran J Reprod Med 10:99–104PubMedPubMedCentralGoogle Scholar
  88. Moretti E, Mazzi L, Bonechi C, Salvatici MC, Iacoponi F, Rossi C, Collodel G (2016) Effect of Quercetin-loaded liposomes on induced oxidative stress in human spermatozoa. Reprod Toxicol 60:140–147PubMedCrossRefGoogle Scholar
  89. Moubasher AE, El Din AM, Ali ME, El-sherif WT, Gaber HD (2013) Catalase improves motility, vitality and DNA integrity of cryopreserved human spermatozoa. Andrologia 45:135–139PubMedCrossRefGoogle Scholar
  90. Murawski M, Saczko J, Marcinkowska A, Chwiłkowska A, Gryboś M, Banaś T (2007) Evaluation of superoxide dismutase activity and its impact on semen quality parameters of infertile men. Folia Histochem Cytobiol 45(Suppl 1):S123–S126PubMedGoogle Scholar
  91. Nekoonam S, Nashtaei MS, Zangi BM, Amidi F (2016) Effect of Trolox on sperm quality in normozospermia and oligozospermia during cryopreservation. Cryobiology 72:106–111PubMedCrossRefGoogle Scholar
  92. Ngamwuttiwong T, Kunathikom S (2007) Evaluation of cryoinjury of sperm chromatin according to liquid nitrogen vapour method (I). J Med Assoc Thai 90:224–228PubMedGoogle Scholar
  93. O’Connell M, McClure N, Lewis SE (2002) The effects of cryopreservation on sperm morphology, motility and mitochondrial function. Hum Reprod 17:704–709PubMedCrossRefGoogle Scholar
  94. Oehninger S, Duru NK, Srisombut C, Morshedi M (2000) Assessment of sperm cryodamage and strategies to improve outcome. Mol Cell Endocrinol 169:3–10PubMedCrossRefGoogle Scholar
  95. Ortiz A, Espino J, Bejarano I, Lozano GM, Monllor F, García JF, Pariente JA, Rodríguez AB (2011) High endogenous melatonin concentrations enhance sperm quality and short-term in vitro exposure to melatonin improves aspects of sperm motility. J Pineal Res 50:132–139PubMedGoogle Scholar
  96. Paasch U, Sharma RK, Gupta AK, Grunewald S, Mascha EJ, Thomas AJ Jr, Glander HJ, Agarwal A (2004) Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol Reprod 71:1828–1837PubMedCrossRefGoogle Scholar
  97. Pini T, Leahy T, de Graaf SP (2018) Sublethal sperm freezing damage: Manifestations and solutions. Theriogenology 118:172–181PubMedCrossRefGoogle Scholar
  98. Polge C, Smith AU, Parkes AS (1949) Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 164:666PubMedCrossRefGoogle Scholar
  99. Reiter RJ, Tan DX, Manchester LC, Paredes SD, Mayo JC, Sainz RM (2009) Melatonin and reproduction revisited. Biol Reprod 81:445–456PubMedCrossRefGoogle Scholar
  100. Rossi T, Mazzilli F, Delfino M, Dondero F (2001) Improved human sperm recovery using superoxide dismutase and catalase supplementation in semen cryopreservation procedure. Cell Tissue Bank 2:9–13PubMedCrossRefGoogle Scholar
  101. Rostand J (1946) Glycerine et resistance du sperm aux basses temperature. CR Acad Sci Paris 222:1524Google Scholar
  102. Said TM, Gaglani A, Agarwal A (2010) Implication of apoptosis in sperm cryoinjury. Reprod Biomed Online 21:456–462PubMedCrossRefGoogle Scholar
  103. Saito K, Suzuki K, Iwasaki A, Yumura Y, Kubota Y (2005) Sperm cryopreservation before cancer chemotherapy helps in the emotional battle against cancer. Cancer 104:521–524PubMedCrossRefGoogle Scholar
  104. Sariözkan S, Bucak MN, Tuncer PB, Ulutaş PA, Bilgen A (2009) The influence of cysteine and taurine on microscopic-oxidative stress parameters and fertilizing ability of bull semen following cryopreservation. Cryobiology 58:134–138PubMedCrossRefGoogle Scholar
  105. Seifi-Jamadi A, Kohram H, Shahneh AZ, Ansari M, Macías-García B (2016) Quercetin ameliorate motility in frozen-thawed Türkmen stallions sperm. J Equine Vet Sci 45:73–77CrossRefGoogle Scholar
  106. Semercioz A, Onur R, Ogras S, Orhan I (2003) Effects of melatonin on testicular tissue nitric oxide level and antioxidant enzyme activities in experimentally induced left varicocele. Neuro Endocrinol Lett 24:86–90PubMedPubMedCentralGoogle Scholar
  107. Shabani Nashtaei M, Nekoonam S, Naji M, Bakhshalizadeh S, Amidi F (2018) Cryoprotective effect of resveratrol on DNA damage and crucial human sperm messenger RNAs, possibly through 5' AMP-activated protein kinase activation. Cell Tissue Bank 19:87–95PubMedCrossRefGoogle Scholar
  108. Shafiei M, Forouzanfar M, Hosseini SM, Esfahani MH (2015) The effect of superoxide dismutase mimetic and catalase on the quality of postthawed goat semen. Theriogenology 83:1321–1327PubMedCrossRefGoogle Scholar
  109. Sherman JK (1963) Improved methods of preservation of human spermatozoa by freezing and freeze-drying. Fertil Steril 14:49–64PubMedCrossRefGoogle Scholar
  110. Sherman JF (1990) Cryopreservation of human semen. In: Keel B, Webster BW (eds) Handbook of the laboratory diagnosis and treatment of infertility. CRC Press, Boca Raton/Ann Arbor/Boston, pp 229–260Google Scholar
  111. Sierens J, Hartley J, Campbell M, Leathem A, Woodside J (2002) In vitro isoflavone supplementation reduces hydrogen peroxide-induced DNA damage in sperm. Teratog Carcinog Mutagen 22:227–234PubMedCrossRefGoogle Scholar
  112. Silva EC, Cajueiro JF, Silva SV, Soares PC, Guerra MM (2012) Effect of antioxidants resveratrol and quercetin on in vitro evaluation of frozen ram sperm. Theriogenology 77:1722–1726PubMedCrossRefPubMedCentralGoogle Scholar
  113. Song GJ, Norkus EP, Lewis V (2006) Relationship between seminal ascorbic acid and sperm DNA integrity in infertile men. Int J Androl 29:569–575PubMedCrossRefGoogle Scholar
  114. Sönmez M, Yüce A, Türk G (2007) The protective effect of melatonin and Vitamin E on antioxidant enzyme activities and epididymal sperm characteristics of homocysteine treated male rats. Reprod Toxicol 23:226–231PubMedCrossRefGoogle Scholar
  115. Spanò M, Cordelli E, Leter G, Lombardo F, Lenzi A, Gandini L (1999) Nuclear chromatin variations in human spermatozoa undergoing swim-up and cryopreservation evaluated by the flow cytometric sperm chromatin structure assay. Mol Hum Reprod 5:29–37PubMedCrossRefGoogle Scholar
  116. Stojanović S, Sprinz H, Brede O (2001) Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation. Arch Biochem Biophys 391:79–89PubMedCrossRefGoogle Scholar
  117. Succu S, Berlinguer F, Pasciu V, Satta V, Leoni GG, Naitana S (2011) Melatonin protects ram spermatozoa from cryopreservation injuries in a dose-dependent manner. J Pineal Res 50:310–318PubMedCrossRefPubMedCentralGoogle Scholar
  118. Sun JG, Jurisicova A, Casper RF (1997) Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod 56:602–607PubMedCrossRefPubMedCentralGoogle Scholar
  119. Tan DX, Manchester LC, Reiter RJ, Qi WB, Karbownik M, Calvo JR (2000) Significance of melatonin in antioxidative defense system: reactions and products. Biol Signals Recept 9:137–159PubMedCrossRefPubMedCentralGoogle Scholar
  120. Taylor K, Roberts P, Sanders K, Burton P (2009) Effect of antioxidant supplementation of cryopreservation medium on post-thaw integrity of human spermatozoa. Reprod Biomed Online 18:184–189PubMedCrossRefGoogle Scholar
  121. Thomson LK, Fleming SD, Aitken RJ, De Iuliis GN, Zieschang JA, Clark AM (2009) Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod 24:2061–2070CrossRefGoogle Scholar
  122. Topraggaleh TR, Shahverdi A, Rastegarnia A, Ebrahimi B, Shafiepour V, Sharbatoghli M, Esmaeili V, Janzamin E (2014) Effect of cysteine and glutamine added to extender on post-thaw sperm functional parameters of buffalo bull. Andrologia 46:777–783PubMedCrossRefGoogle Scholar
  123. Uysal O, Bucak MN (2007) Effects of oxidized glutathione, bovine serum albumin, cysteine and lycopene on the quality of frozen-thawed ram semen. Acta Vet Brno 76:383–390CrossRefGoogle Scholar
  124. Wang X, Sharma RK, Sikka SC, Thomas AJ, Falcone T, Agarwal A (2003) Oxidative stress is associated with increased apoptosis leading to spermatozoa DNA damage in patients with male factor infertility. Fertil Steril 80:531–535PubMedCrossRefGoogle Scholar
  125. White IG (1993) Lipids and calcium uptake of sperm in relation to cold shock and preservation: a review. Reprod Fertil Dev 5:639–658PubMedCrossRefGoogle Scholar
  126. Yan L, Liu J, Wu S, Zhang S, Ji G, Gu A (2014) Seminal superoxide dismutase activity and its relationship with semen quality and SOD gene polymorphism. J Assist Reprod Genet 31:549–554PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zeitoun MM, Al-Damegh MA (2014) Effect of nonenzymatic antioxidants on sperm motility and survival relative to free radicals and antioxidant enzymes of chilled-stored ram semen. Open J Anim Sci 5:50CrossRefGoogle Scholar
  128. Zeron Y, Pearl M, Borochov A, Arav A (1999) Kinetic and temporal factors influence chilling injury to germinal vesicle and mature bovine oocytes. Cryobiology 38:35–42PubMedCrossRefGoogle Scholar
  129. Zhu Z, Ren Z, Fan X, Pan Y, Lv S, Pan C, Lei A, Zeng W (2017) Cysteine protects rabbit spermatozoa against reactive oxygen species-induced damages. PLoS One 12:e0181110PubMedPubMedCentralCrossRefGoogle Scholar
  130. Zielonka J, Gebicki J, Grynkiewicz G (2003) Radical scavenging properties of genistein. Free Radic Biol Med 35:958–965PubMedCrossRefGoogle Scholar
  131. Zribi N, Feki Chakroun N, El Euch H, Gargouri J, Bahloul A, Ammar Keskes L (2010) Effects of cryopreservation on human sperm deoxyribonucleic acid integrity. Fertil Steril 93:159–166PubMedCrossRefGoogle Scholar
  132. Zribi N, Feki Chakroun N, Ben Abdallah F, Elleuch H, Sellami A, Rebai T, Fakhfakh F, Keskes LA (2012) Effect of freezing-thawing process and quercetin on human sperm survival and DNA integrity. Cryobiology 65:326–331PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Donatella Paoli
    • 1
    Email author
  • Marianna Pelloni
    • 1
  • Andrea Lenzi
    • 1
  • Francesco Lombardo
    • 1
  1. 1.Laboratory of Seminology – Sperm Bank “Loredana Gandini”, Department of Experimental MedicineUniversity of Rome “La Sapienza”RomeItaly

Personalised recommendations