Advertisement

Interventions to Prevent Sperm DNA Damage Effects on Reproduction

  • Sandro C. EstevesEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1166)

Abstract

Excessive oxidation and antioxidant imbalance resulting from several conditions may cause sperm DNA damage, which, in turn, affect male fertility, both natural and assisted. Sperm DNA damage transferred to the embryo might also affect the health of offspring. Several conditions associated with excessive oxidative stress are modifiable by the use of specific treatments, lifestyle changes, and averting exposure to environmental/occupational toxicants. Here, we discuss the strategies to reduce sperm DNA damage with a focus on clinical and surgical interventions.

Keywords

Sperm DNA fragmentation Male infertility Semen analysis Assisted reproductive technology Varicocele Unexplained infertility Intrauterine insemination In vitro fertilization Intracytoplasmic sperm injection Recurrent pregnancy loss Testicular sperm Lifestyle modifications 

References

  1. Abad C, Amengual MJ, Gosalvez J, Coward K, Hannaoui N, Benet J et al (2013) Effects of oral antioxidant treatment upon the dynamics of human sperm DNA fragmentation and subpopulations of sperm with highly degraded DNA. Andrologia 45:211–216PubMedCrossRefPubMedCentralGoogle Scholar
  2. Abdelbaki SA, Sabry JH, Al-Adl AM, Sabry HH (2017) The impact of coexisting sperm DNA fragmentation and seminal oxidative stress on the outcome of varicocelectomy in infertile patients: a prospective controlled study. Arab J Urol 15:131–139PubMedPubMedCentralCrossRefGoogle Scholar
  3. Abd-Elmoaty MA, Saleh R, Sharma R, Agarwal A (2010) Increased levels of oxidants and reduced antioxidants in semen of infertile men with varicocele. Fertil Steril 94:1531–1534PubMedCrossRefPubMedCentralGoogle Scholar
  4. Agarwal A, Hamada A, Esteves SC (2012) Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol 9:678–690PubMedCrossRefPubMedCentralGoogle Scholar
  5. Agarwal A, Mulgund A, Alshahrani S, Assidi M, Abuzenadah AM, Sharma R et al (2014) Reactive oxygen species and sperm DNA damage in infertile men presenting with low level leukocytospermia. Reprod Biol Endocrinol 12:126PubMedPubMedCentralCrossRefGoogle Scholar
  6. Agarwal A, Cho CL, Esteves SC (2016a) Should we evaluate and treat sperm DNA fragmentation? Curr Opin Obstet Gynecol 28:164–171PubMedCrossRefPubMedCentralGoogle Scholar
  7. Agarwal A, Majzoub A, Esteves SC, Ko E, Ramasamy R, Zini A (2016b) Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol 5:935–950PubMedPubMedCentralCrossRefGoogle Scholar
  8. Agarwal A, Sharma R, Roychoudhury S, Du Plessis S, Sabanegh E (2016c) MiOXSYS: a novel method of measuring oxidation reduction potential in semen and seminal plasma. Fertil Steril 106:566–573PubMedCrossRefPubMedCentralGoogle Scholar
  9. Agarwal A, Cho CL, Majzoub A, Esteves SC (2017a) The Society for Translational Medicine: clinical practice guidelines for sperm DNA fragmentation testing in male infertility. Transl Androl Urol 6(Suppl 4):720–733CrossRefGoogle Scholar
  10. Agarwal A, Cho C-L, Esteves SC, Majzoub A (2017b) Reactive oxygen species and sperm DNA fragmentation. Transl Androl Urol 6(Suppl 4):695–696CrossRefGoogle Scholar
  11. Agarwal A, Arafa M, Chandrakumar R, Majzoub A, AlSaid S, Elbardisi H (2017c) A multicenter study to evaluate oxidative stress by oxidation-reduction potential, a reliable and reproducible method. Andrology 5:939–945PubMedCrossRefGoogle Scholar
  12. Aitken RJ (2017) DNA damage in human spermatozoa; important contributor to mutagenesis in the offspring. Transl Androl Urol 6(Suppl 4):761–764CrossRefGoogle Scholar
  13. Aitken RJ (2018) Not every sperm is sacred; a perspective on male infertility. Mol Hum Reprod 24(6):287–298.  https://doi.org/10.1093/molehr/gay010CrossRefPubMedGoogle Scholar
  14. Aitken RJ, Smith TB, Jobling MS, Baker MA, De Iuliis GN (2014) Oxidative stress and male reproductive health. Asian J Androl 16:31–38PubMedCrossRefGoogle Scholar
  15. Alhathal N, San Gabriel M, Zini A (2016) Beneficial effects of microsurgical varicocoelectomy on sperm maturation, DNA fragmentation, and nuclear sulfhydryl groups: a prospective trial. Andrology 4:1204–1208PubMedCrossRefGoogle Scholar
  16. Allamaneni SS, Naughton CK, Sharma RK, Thomas AJ Jr, Agarwal A (2004) Increased seminal reactive oxygen species levels in patients with varicoceles correlate with varicocele grade but not with testicular size. Fertil Steril 82:1684–1686PubMedCrossRefGoogle Scholar
  17. Alshahrani S, Agarwal A, Assidi M, Abuzenadah AM, Durairajanayagam D, Ayaz A et al (2014) Infertile men older than 40 years are at higher risk of sperm DNA damage. Reprod Biol Endocrinol 12:103PubMedPubMedCentralCrossRefGoogle Scholar
  18. Arafa M, AlMalki A, AlBadr M et al (2018) ICSI outcome in patients with high DNA fragmentation: Testicular versus ejaculated spermatozoa. Andrologia 50(1)Google Scholar
  19. Baker K, McGill J, Sharma R, Agarwal A, Sabanegh E Jr (2013) Pregnancy after varicocelectomy: impact of postoperative motility and DFI. Urology 81:760–766PubMedCrossRefGoogle Scholar
  20. Bauersachs J, Widder JD (2010) Reductive stress: linking heat shock protein 27, glutathione, and cardiomyopathy? Hypertension 55(6):1299–1300PubMedCrossRefGoogle Scholar
  21. Bertoncelli Tanaka M, Agarwal A, Esteves SC (2018) Paternal age and assisted reproductive technologies: problem solver or trouble maker. Panminerva Med 61:138.  https://doi.org/10.23736/S0031-0808.18.03512-7. [Epub ahead of printCrossRefPubMedGoogle Scholar
  22. Best D, Avenell A, Bhattacharya S (2017) How effective are weight-loss interventions for improving fertility in women and men who are overweight or obese? A systematic review and meta-analysis of the evidence. Hum Reprod Update 23:681–705PubMedCrossRefGoogle Scholar
  23. Blumer CG, Restelli AE, Giudice PT, Soler TB, Fraietta R, Nichi M et al (2012) Effect of varicocele on sperm function and semen oxidative stress. BJU Int 109:259–265PubMedCrossRefGoogle Scholar
  24. Bradley CK, McArthur SJ, Gee AJ, Weiss KA, Schmidt U, Toogood L (2016) Intervention improves assisted conception intracytoplasmic sperm injection outcomes for patients with high levels of sperm DNA fragmentation: a retrospective analysis. Andrology 4:903–910PubMedCrossRefGoogle Scholar
  25. Campbell JM, Lane M, Owens JA, Bakos HW (2015) Paternal obesity negatively affects male fertility and assisted reproduction outcomes: a systematic review and meta-analysis. Reprod Biomed Online 31:593–604PubMedCrossRefGoogle Scholar
  26. Casarini L, Moriondo V, Marino M, Adversi F, Capodanno F, Grisolia C et al (2014) FSHR polymorphism p.N680S mediates different responses to FSH in vitro. Mol Cell Endocrinol 393:83–91PubMedCrossRefGoogle Scholar
  27. Chabory E, Damon C, Lenoir A, Kauselmann G, Kern H, Zevnik B et al (2009) Epididymis seleno-independent glutathione peroxidase 5 maintains sperm DNA integrity in mice. J Clin Invest 119:2074–2085PubMedPubMedCentralGoogle Scholar
  28. Champroux A, Torres-Carreira J, Gharagozloo P, Drevet JR, Kocer A (2016) Mammalian sperm nuclear organization: resiliencies and vulnerabilities. Basic Clin Androl 26:17PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chen SS, Huang WJ, Chang LS, Wei YH (2008) Attenuation of oxidative stress after varicocelectomy in subfertile patients with varicocele. J Urol 179:639–642PubMedCrossRefGoogle Scholar
  30. Cheung S, Schlegel PN, Rosenwaks Z, Palermo GD (2019) Revisiting aneuploidy profile of surgically retrieved spermatozoa by whole exome sequencing molecular karyotype. PLoS One 14:e0210079PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cho CL, Esteves SC, Agarwal A (2016) Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl 18:186–193PubMedCrossRefGoogle Scholar
  32. Colacurci N, Monti MG, Fornaro F, Izzo G, Izzo P, Trotta C et al (2012) Recombinant human FSH reduces sperm DNA fragmentation in men with idiopathic oligoasthenoteratozoospermia. J Androl 33:588–593PubMedCrossRefGoogle Scholar
  33. Colacurci N, De Leo V, Ruvolo G, Piomboni P, Caprio F, Pivonello R et al (2018) Recombinant FSH improves sperm DNA damage in male infertility: a phase II clinical trial. Front Endocrinol (Lausanne) 9:383CrossRefGoogle Scholar
  34. Condorelli RA, La Vignera S, Mongioì LM, Alamo A, Calogero AE (2018) Diabetes mellitus and infertility: different pathophysiological effects in type 1 and type 2 on sperm function. Front Endocrinol (Lausanne) 9:268CrossRefGoogle Scholar
  35. Craig JR, Jenkins TG, Carrell DT, Hotaling JM (2017) Obesity, male infertility, and the sperm epigenome. Fertil Steril 107:848–859PubMedCrossRefGoogle Scholar
  36. Cunha BA, Garabedian-Ruffalo SM (1980) Tetracyclines in urology: current concepts. Urology 36:54856Google Scholar
  37. Dada R (2017 Sep) Sperm DNA damage diagnostics: when and why. Transl Androl Urol 6(Suppl 4):691–694CrossRefGoogle Scholar
  38. Dehghan Marvast L, Talebi AR, Ghasemzadeh J, Hosseini A, Pacey AA (2018) Effects of Chlamydia trachomatis infection on sperm chromatin condensation and DNA integrity. Andrologia 50(3)Google Scholar
  39. Esteves SC (2016) Novel concepts in male factor infertility: clinical and laboratory perspectives. J Assist Reprod Genet 33:1319–1335PubMedPubMedCentralCrossRefGoogle Scholar
  40. Esteves SC (2018a) Should a Couple with Failed In Vitro Fertilization or Intracytoplasmic Sperm Injection and Elevated Sperm DNA Fragmentation Use Testicular Sperm for the Next Cycle? Eur Urol Focus 4:296–298PubMedCrossRefPubMedCentralGoogle Scholar
  41. Esteves SC (2018b) Testicular versus ejaculated sperm should be used for intracytoplasmic sperm injection (ICSI) in cases of infertility associated with sperm DNA fragmentation | Opinion: Yes. Int Braz J Urol 44:667–675PubMedPubMedCentralCrossRefGoogle Scholar
  42. Esteves SC, Agarwal A (2017) Afterword to varicocele and male infertility: current concepts and future perspectives. Asian J Androl 18:319–322CrossRefGoogle Scholar
  43. Esteves SC, Hamada A, Kondray V, Pitchika A, Agarwal A (2012) What every gynecologist should know about male infertility: an update. Arch Gynecol Obstet 286:217–229PubMedCrossRefPubMedCentralGoogle Scholar
  44. Esteves SC, Sharma RK, Gosálvez J, Agarwal A (2014) A translational medicine appraisal of specialized andrology testing in unexplained male infertility. Int Urol Nephrol 46:1037–1052PubMedCrossRefPubMedCentralGoogle Scholar
  45. Esteves SC, Gosálvez J, López-Fernández C, Núñez-Calonge R, Caballero P, Agarwal A et al (2015a) Diagnostic accuracy of sperm DNA degradation index (DDSi) as a potential noninvasive biomarker to identify men with varicocele-associated infertility. Int Urol Nephrol 47:1471–1477PubMedCrossRefPubMedCentralGoogle Scholar
  46. Esteves SC, Sanchez-Martin F, Sanchez-Martin P, Schneider DT, Gosalvez J (2015b) Comparison of reproductive outcome in oligozoospermic men with high sperm DNA fragmentation undergoing intracytoplasmic sperm injection with ejaculated and testicular sperm. Fertil Steril 104:1398–1405PubMedCrossRefPubMedCentralGoogle Scholar
  47. Esteves SC, Roque M, Bradley CK, Garrido N (2017a) Reproductive outcomes of testicular versus ejaculated sperm for intracytoplasmic sperm injection among men with high levels of DNA fragmentation in semen: systematic review and meta-analysis. Fertil Steril 108:456–467PubMedCrossRefPubMedCentralGoogle Scholar
  48. Esteves SC, Agarwal A, Cho CL, Majzoub A (2017b) A Strengths-Weaknesses-Opportunities-Threats (SWOT) analysis on the clinical utility of sperm DNA fragmentation testing in specific male infertility scenarios. Transl Androl Urol 6(Suppl 4):734–760CrossRefGoogle Scholar
  49. Esteves SC, Agarwal A, Majzoub A (2017c) The complex nature of the sperm DNA damage process. Transl Androl Urol 6(Suppl 4):S557–S559PubMedPubMedCentralCrossRefGoogle Scholar
  50. Esteves SC, Agarwal A, Majzoub A (2017d) An evidence-based perspective on the role of sperm chromatin integrity and sperm DNA fragmentation testing in male infertility. Transl Androl Urol 6(Suppl 4):S665–S672PubMedPubMedCentralCrossRefGoogle Scholar
  51. Faure C, Dupont C, Baraibar MA, Ladouce R, Cedrin-Durnerin I, Wolf JP et al (2014) In subfertile couple, abdominal fat loss in men is associated with improvement of sperm quality and pregnancy: a case-series. PLoS One 9(2):e86300PubMedPubMedCentralCrossRefGoogle Scholar
  52. Feng Z, Hu W, Amin S, Tang MS (2003) Mutational spectrum and genotoxicity of the major lipid peroxidation product, trans-4-hydroxy-2-nonenal, induced DNA adducts in nucleotide excision repair-proficient and -deficient human cells. Biochemistry 42:7848–7854PubMedCrossRefPubMedCentralGoogle Scholar
  53. Fraczek M, Hryhorowicz M, Gill K, Zarzycka M, Gaczarzewicz D, Jedrzejczak P et al (2016) The effect of bacteriospermia and leukocytospermia on conventional and nonconventional semen parameters in healthy young normozoospermic males. J Reprod Immunol 118:18–27PubMedCrossRefPubMedCentralGoogle Scholar
  54. Fraga CG, Motchnik PA, Shigenaga MK, Helbock HJ, Jacob RA, Ames BN (1991) Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl Acad Sci U S A 88:11003–11006PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gallegos G, Ramos B, Santiso R, Goyanes V, Gosalvez J, Fernandez JL (2008) Sperm DNA fragmentation in infertile men with genitourinary infection by Chlamydia trachomatis and Mycoplasma. Fertil Steril 90:328–334PubMedCrossRefPubMedCentralGoogle Scholar
  56. Gandhi J, Hernandez RJ, Chen A, Smith NL, Sheynkin YR, Joshi G et al (2017) Impaired hypothalamic-pituitary-testicular axis activity, spermatogenesis, and sperm function promote infertility in males with lead poisoning. Zygote 25:103–110PubMedCrossRefPubMedCentralGoogle Scholar
  57. Garolla A, Ghezzi M, Cosci I, Sartini B, Bottacin A, Engl B et al (2017) FSH treatment in infertile males candidate to assisted reproduction improved sperm DNA fragmentation and pregnancy rate. Endocrine 56:416–425PubMedCrossRefPubMedCentralGoogle Scholar
  58. Gómez-Torres MJ, Medrano L, Romero A, Fernández-Colom PJ, Aizpurúa J (2017) Effectiveness of human spermatozoa biomarkers as indicators of structural damage during cryopreservation. Cryobiology 78:90–94PubMedCrossRefPubMedCentralGoogle Scholar
  59. Gosálvez J, Lopez-Fernandez C, Fernandez JL, Esteves SC, Johnston SD (2015) Unpacking the mysteries of sperm DNA fragmentation: ten frequently asked questions. J Reprod Biotechnol Fertil 4:1–16CrossRefGoogle Scholar
  60. Gosálvez J, Coppola L, Fernández JL, López-Fernández C, Góngora A, Faundez R et al (2017) Multi-centre assessment of nitroblue tetrazolium reactivity in human semen as a potential marker of oxidative stress. Reprod Biomed Online 34:513–521PubMedCrossRefPubMedCentralGoogle Scholar
  61. Gosálvez J, Fernández JL, Esteves SC (2018) Response: Nitroblue tetrazolium (NBT) assay. Reprod Biomed Online 36:92–93PubMedCrossRefPubMedCentralGoogle Scholar
  62. Greco E, Romano S, Iacobelli M, Ferrero S, Baroni E, Minasi MG et al (2005a) ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Hum Reprod 20:2590–2594PubMedCrossRefPubMedCentralGoogle Scholar
  63. Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J (2005b) Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl 26:349–353PubMedCrossRefPubMedCentralGoogle Scholar
  64. Greco E, Scarselli F, Iacobelli M et al (2005c) Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod 20(1):226–230PubMedCrossRefPubMedCentralGoogle Scholar
  65. Gual-Frau J, Abad C, Amengual MJ, Hannaoui N, Checa MA, Ribas-Maynou J et al (2015) Oral antioxidant treatment partly improves integrity of human sperm DNA in infertile grade I varicocele patients. Hum Fertil (Camb) 18:225–229CrossRefGoogle Scholar
  66. Hamada A, Esteves SC, Nizza M, Agarwal A (2012) Unexplained male infertility: diagnosis and management. Int Braz J Urol 38:576–594PubMedCrossRefPubMedCentralGoogle Scholar
  67. Hamada A, Esteves SC, Agarwal A (2013) Insight into oxidative stress in varicoceleassociated male infertility: part 2. Nat Rev Urol 10:26–37PubMedCrossRefPubMedCentralGoogle Scholar
  68. Hammoud I, Bailly M, Bergere M et al (2017) Testicular Spermatozoa Are of Better Quality Than Epididymal Spermatozoa in Patients With Obstructive Azoospermia. Urology 103:106–111PubMedCrossRefPubMedCentralGoogle Scholar
  69. Hendin BN, Kolettis PN, Sharma RK, Thomas AJ Jr, Agarwal A (1999) Varicocele is associated with elevated spermatozoal reactive oxygen species production and diminished seminal plasma antioxidant capacity. J Urol 161:1831–1834PubMedCrossRefPubMedCentralGoogle Scholar
  70. Houfflyn S, Matthys C, Soubry A (2017) Male obesity: epigenetic origin and effects in sperm and offspring. Curr Mol Biol Rep 3:288–296PubMedPubMedCentralCrossRefGoogle Scholar
  71. Hurtado de Catalfo GE, Ranieri-Casilla A, Marra FA, de Alaniz MJ, Marra CA (2007) Oxidative stress biomarkers and hormonal profile in human patients undergoing varicocelectomy. Int J Androl 30:519–530PubMedCrossRefPubMedCentralGoogle Scholar
  72. Ishikawa T, Fujioka H, Ishimura T, Takenaka A, Fujisawa M (2007) Increased testicular 8-hydroxy-2′-deoxyguanosine in patients with varicocele. BJU Int 100:863–866PubMedCrossRefPubMedCentralGoogle Scholar
  73. Jamal F, Haque QS, Singh S, Rastogi SK (2016) The influence of organophosphate and carbamate on sperm chromatin and reproductive hormones among pesticide sprayers. Toxicol Ind Health 32:1527–1536PubMedCrossRefPubMedCentralGoogle Scholar
  74. Jeng HA, Pan CH, Chao MR, Chiu CC, Zhou G, Chou CK et al (2016) Sperm quality and DNA integrity of coke oven workers exposed to polycyclic aromatic hydrocarbons. Int J Occup Med Environ Health 29:915–926PubMedCrossRefPubMedCentralGoogle Scholar
  75. Jurewicz J, Radwan M, Sobala W, Radwan P, Bochenek M, Hanke W (2018) Dietary patterns and their relationship with semen quality. Am J Mens Health 12:575–583PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kaarouch I, Bouamoud N, Madkour A, Louanjli N, Saadani B, Assou S et al (2018) Paternal age: Negative impact on sperm genome decays and IVF outcomes after 40 years. Mol Reprod Dev 85:271–280PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kadioglu TC, Aliyev E, Celtik M (2014) Microscopic varicocelectomy significantly decreases the sperm DNA fragmentation index in patients with infertility. Biomed Res Int:695713Google Scholar
  78. Kamischke A, Behre HM, Bergmann M, Simoni M, Schäfer T, Nieschlag E (1998) Recombinant human follicle stimulating hormone for treatment of male idiopathic infertility: a randomized, double-blind, placebo-controlled, clinical trial. Hum Reprod 13:596–603PubMedCrossRefGoogle Scholar
  79. Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T (1997) Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril 68:519–524PubMedCrossRefGoogle Scholar
  80. Köksal IT, Tefekli A, Usta M, Erol H, Abbasoglu S, Kadioglu A (2000) The role of reactive oxygen species in testicular dysfunction associated with varicocele. BJU Int 86:549–552PubMedCrossRefGoogle Scholar
  81. Krawetz SA (2005) Paternal contribution: new insights and future challenges. Nat Rev Genet 6(8):633–642PubMedCrossRefPubMedCentralGoogle Scholar
  82. Kumar SB, Chawla B, Bisht S, Yadav RK, Dada R (2015) Tobacco Use Increases Oxidative DNA Damage in Sperm – Possible Etiology of Childhood Cancer. Asian Pac J Cancer Prev 16:6967–6972PubMedCrossRefPubMedCentralGoogle Scholar
  83. La Vignera S, Vita R (2018) Thyroid dysfunction and semen quality. Int J Immunopathol Pharmacol 32:2058738418775241PubMedPubMedCentralCrossRefGoogle Scholar
  84. La Vignera S, Condorelli R, Vicari E, D’Agata R, Calogero AE (2012) Effects of varicocelectomy on sperm DNA fragmentation, mitochondrial function, chromatin condensation, and apoptosis. J Androl 33:389–396PubMedCrossRefPubMedCentralGoogle Scholar
  85. La Vignera S, Vita R, Condorelli RA, Mongioì LM, Presti S, Benvenga S et al (2017) Impact of thyroid disease on testicular function. Endocrine 58:397–407PubMedCrossRefPubMedCentralGoogle Scholar
  86. Lacerda JI, Del Giudice PT, da Silva BF, Nichi M, Fariello RM, Fraietta R et al (2011) Adolescent varicocele: improved sperm function after varicocelectomy. Fertil Steril 95:994–999PubMedCrossRefPubMedCentralGoogle Scholar
  87. Lafuente R, García-Blàquez N, Jacquemin B, Checa MA (2016) Outdoor air pollution and sperm quality. Fertil Steril 106:880–896PubMedCrossRefPubMedCentralGoogle Scholar
  88. Leisegang K, Bouic PJ, Henkel RR (2016) Metabolic syndrome is associated with increased seminal inflammatory cytokines and reproductive dysfunction in a case-controlled male cohort. Am J Reprod Immunol 76:155–163PubMedCrossRefGoogle Scholar
  89. Lewis SE, Aitken RJ (2005) DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res 322:33–41PubMedCrossRefGoogle Scholar
  90. Li F, Yamaguchi K, Okada K, Matsushita K, Ando M, Chiba K et al (2012) Significant improvement of sperm DNA quality after microsurgical repair of varicocele. Syst Biol Reprod Med 58:274–247PubMedCrossRefGoogle Scholar
  91. Lopes S, Jurisicova A, Sun JG, Casper RF (1998) Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod 13:896–900PubMedCrossRefGoogle Scholar
  92. Lu X, Huang Y, Zhang H, Zhao J (2017) Effect of diabetes mellitus on the quality and cytokine content of human semen. J Reprod Immunol 123:1–2PubMedCrossRefGoogle Scholar
  93. Majzoub A, Esteves SC, Gosálvez J, Agarwal A (2016) Specialized sperm function tests in varicocele and the future of andrology laboratory. Asian J Androl 18:205–212PubMedPubMedCentralCrossRefGoogle Scholar
  94. Majzoub A, Agarwal A, Cho CL, Esteves SC (2017a) Sperm DNA fragmentation testing: a cross sectional survey on current practices of fertility specialists. Transl Androl Urol 6(Suppl 4):710–719CrossRefGoogle Scholar
  95. Majzoub A, Agarwal A, Esteves SC (2017b) Antioxidants for elevated sperm DNA fragmentation: a mini review. Transl Androl Urol 6(Suppl 4):S649–S653PubMedPubMedCentralCrossRefGoogle Scholar
  96. Maresch CC, Stute DC, Alves MG, Oliveira PF, de Kretser DM, Linn T (2018) Diabetes-induced hyperglycemia impairs male reproductive function: a systematic review. Hum Reprod Update 24:86–105PubMedCrossRefGoogle Scholar
  97. Martínez-Soto JC, Domingo JC, Cordobilla B, Nicolás M, Fernández L, Albero P et al (2016) Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation. Syst Biol Reprod Med 62:387–395PubMedCrossRefGoogle Scholar
  98. Meamar M, Zribi N, Cambi M, Tamburrino L, Marchiani S, Filimberti E et al (2012) Sperm DNA fragmentation induced by cryopreservation: new insights and effect of a natural extract from Opuntia ficus-indica. Fertil Steril 98:326–333PubMedCrossRefGoogle Scholar
  99. Mehraban D, Ansari M, Keyhan H, Sedighi Gilani M, Naderi G, Esfehani F (2005) Comparison of nitric oxide concentration in seminal fluid between infertile patients with and without varicocele and normal fertile men. J Urol 2:106–110Google Scholar
  100. Mehta A, Bolyakov A, Schlegel PN, Paduch DA (2015) Higher pregnancy rates using testicular sperm in men with severe oligospermia. Fertil Steril 104:1382–1387PubMedCrossRefGoogle Scholar
  101. Ménézo YJ, Hazout A, Panteix G, Robert F, Rollet J, Cohen-Bacrie P et al (2007) Antioxidants to reduce sperm DNA fragmentation: an unexpected adverse effect. Reprod Biomed Online 14:418–421PubMedCrossRefGoogle Scholar
  102. Micillo A, Vassallo MR, Cordeschi G, D'Andrea S, Necozione S, Francavilla F et al (2016) Semen leukocytes and oxidative-dependent DNA damage of spermatozoa in male partners of subfertile couples with no symptoms of genital tract infection. Andrology 4:808–815PubMedCrossRefGoogle Scholar
  103. Miranda-Contreras L, Cruz I, Osuna JA, Gómez-Pérez R, Berrueta L, Salmen S et al (2015) Effects of occupational exposure to pesticides on semen quality of workers in an agricultural community of Merida state. Venezuela Invest Clin 56:123–136PubMedGoogle Scholar
  104. Miyaoka R, Orosz JE, Achermann AP, Esteves SC (2018) Methods of surgical sperm extraction and implications for ART success. Panminerva Med. [ahead of print]Google Scholar
  105. Mohammed EE, Mosad E, Zahran AM, Hameed DA, Taha EA, Mohamed MA (2015) Acridine orange and flow cytometry: which is better to measure the effect of varicocele on sperm DNA integrity? Adv Urol:814150Google Scholar
  106. Moskovtsev SI, Lecker I, Mullen JB, Jarvi K, Willis J, White J et al (2009) Cause-specific treatment in patients with high sperm DNA damage resulted in significant DNA improvement. Syst Biol Reprod Med 55:109–115PubMedCrossRefGoogle Scholar
  107. Moskovtsev SI, Jarvi K, Mullen JB, Cadesky KI, Hannam T, Lo KC (2010) Testicular spermatozoa have statistically significantly lower DNA damage compared with ejaculated spermatozoa in patients with unsuccessful oral antioxidant treatment. Fertil Steril 93(4):1142–1146PubMedCrossRefGoogle Scholar
  108. Mostafa T, Anis TH, El-Nashar A, Imam H, Othman IA (2001) Varicocelectomy reduces reactive oxygen species levels and increases antioxidant activity of seminal plasma from infertile men with varicocele. Int J Androl 24:261–265PubMedCrossRefPubMedCentralGoogle Scholar
  109. Mostafa T, As T, Imam H, El-Nashar AR, Osman IA (2009) Seminal reactive oxygen species—antioxidant relationship in fertile males with and without varicocele. Andrologia 41:125–129PubMedCrossRefPubMedCentralGoogle Scholar
  110. Muratori M, Tamburrino L, Marchiani S, Cambi M, Olivito B, Azzari C et al (2015) Investigation on the origin of sperm DNA fragmentation: role of apoptosis, immaturity and oxidative stress. Mol Med 21:109–122PubMedPubMedCentralCrossRefGoogle Scholar
  111. Naber KG, Kinzig M, Sorgel F, Weigel D (1993) Penetration of ofloxacin into prostatic fluid, ejaculate and seminal fluid. Infection 21:98–100PubMedCrossRefPubMedCentralGoogle Scholar
  112. Nasr-Esfahani MH, Abasi H, Razavi S, Ashrafi S, Tavalaee M (2009) Varicocelectomy: semen parameters and protamine deficiency. Int J Androl 32:115–122PubMedCrossRefPubMedCentralGoogle Scholar
  113. Ni K, Steger K, Yang H, Wang H, Hu K, Chen B (2014) Sperm protamine mRNA ratio and DNA fragmentation index represent reliable clinical biomarkers for men with varicocele after microsurgical varicocele ligation. J Urol 192:170–176PubMedCrossRefPubMedCentralGoogle Scholar
  114. Ni K, Steger K, Yang H, Wang H, Hu K, Zhang T et al (2016) A Comprehensive investigation of sperm DNA damage and oxidative stress injury in infertile patients with subclinical, normozoospermic and astheno/oligozoospermic clinical varicocele. Andrology 4:816–824PubMedCrossRefPubMedCentralGoogle Scholar
  115. Nijs M, De Jonge C, Cox A, Janssen M, Bosmans E, Ombelet W (2011) Correlation between male age, WHO sperm parameters, DNA fragmentation, chromatin packaging and outcome in assisted reproduction technology. Andrologia 43:174–179PubMedCrossRefPubMedCentralGoogle Scholar
  116. Ochsendorf FR (1999) Infections in the male genital tract and reactive oxygen species. Hum Reprod Update 5:399–420PubMedCrossRefPubMedCentralGoogle Scholar
  117. O’Connell M, McClure N, Lewis SE (2002) Mitochondrial DNA deletions and nuclear DNA fragmentation in testicular and epididymal human sperm. Hum Reprod 17(6):1565–1570PubMedCrossRefPubMedCentralGoogle Scholar
  118. Omu AE, Al-Azemi MK, Kehinde EO, Anim JT, Oriowo MA, Mathew TC (2008) Indications of the mechanisms involved in improved sperm parameters by zinc therapy. Med Princ Pract 17:108–116PubMedCrossRefGoogle Scholar
  119. Pabuccu EG, Caglar GS, Tangal S, Haliloglu AH, Pabuccu R (2017) Testicular versus ejaculated spermatozoa in ICSI cycles of normozoospermic men with high sperm DNA fragmentation and previous ART failures. Andrologia 49(2)Google Scholar
  120. Pasqualotto FF, Sharma RK, Nelson DR, Thomas AJ Jr, Agarwal A (2000) Relationship between oxidative stress, semen characteristics, and clinical diagnosis in men undergoing infertility investigation. Fertil Steril 73:459–464PubMedCrossRefPubMedCentralGoogle Scholar
  121. Pasqualotto FF, Sundaram A, Sharma RK, Borges E Jr, Pasqualotto EB, Agarwal A. Semen quality and oxidative stress scores in fertile and infertile patients with varicocele. Fertil Steril 2008;89:602–607Google Scholar
  122. Piomboni P, Gambera L, Serafini F, Campanella G, Morgante G, De Leo V (2008) Sperm quality improvement after natural anti-oxidant treatment of asthenoteratospermic men with leukocytospermia. Asian J Androl 10:201–206PubMedCrossRefPubMedCentralGoogle Scholar
  123. Pourmand G, Movahedin M, Dehghani S, Mehrsai A, Ahmadi A, Pourhosein M et al (2014) Does L-carnitine therapy add any extra benefit to standard inguinal varicocelectomy in terms of deoxyribonucleic acid damage or sperm quality factor indices: a randomized study. Urology 84:821–825PubMedCrossRefPubMedCentralGoogle Scholar
  124. Puerta Suarez J, Sanchez LR, Salazar FC, Saka HA, Molina R, Tissera A et al (2017) Chlamydia trachomatis neither exerts deleterious effects on spermatozoa nor impairs male fertility. Sci Rep 7:1126PubMedPubMedCentralCrossRefGoogle Scholar
  125. Radwan M, Jurewicz J, Polańska K, Sobala W, Radwan P, Bochenek M et al (2016) Exposure to ambient air pollution--does it affect semen quality and the level of reproductive hormones? Ann Hum Biol 43:50–56PubMedCrossRefPubMedCentralGoogle Scholar
  126. Ramasamy R, Yagan N, Schlegel PN (2005) Structural and functional changes to the testis after conventional versus microdissection testicular sperm extraction. Urology 65(6):1190–1194PubMedCrossRefGoogle Scholar
  127. Rima D, Shiv BK, Bhavna C, Shilpa B, Saima K (2016) Oxidative stress induced damage to paternal genome and impact of meditation and Yoga – can it reduce incidence of childhood cancer? Asian Pac J Cancer Prev 17:4517–4525PubMedGoogle Scholar
  128. Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S et al (2012) The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod 27:2908–2917PubMedCrossRefPubMedCentralGoogle Scholar
  129. Roque M, Esteves SC (2018) Effect of varicocele repair on sperm DNA fragmentation: a review. Int Urol Nephrol 50:583–603PubMedCrossRefPubMedCentralGoogle Scholar
  130. Sakamoto Y, Ishikawa T, Kondo Y, Yamaguchi K, Fujisawa M (2008) The assessment of oxidative stress in infertile patients with and without varicocele. BJU Int 101:1547–1552PubMedCrossRefPubMedCentralGoogle Scholar
  131. Saleh RA, Agarwal A, Nelson DR, Nada EA, El-Tonsy MH, Alvarez JG et al (2002) Increased sperm nuclear DNA damage in normozoospermic infertile men: a prospective study. Fertil Steril 78:313–318PubMedCrossRefPubMedCentralGoogle Scholar
  132. Sánchez-Peña LC, Reyes BE, López-Carrillo L, Recio R, Morán-Martínez J, Cebrián ME et al (2004) Organophosphorous pesticide exposure alters sperm chromatin structure in Mexican agricultural workers. Toxicol Appl Pharmacol 196:108–113PubMedCrossRefPubMedCentralGoogle Scholar
  133. Schramm P (1986) Ofloxacin: concentration in human ejaculate and influence on sperm motility. Infection 14(Suppl 4):274–275CrossRefGoogle Scholar
  134. Sergerie M, Laforest G, Boulanger K, Bissonnette F, Bleau G (2005) Longitudinal study of sperm DNA fragmentation as measured by terminal uridine nick end-labelling assay. Hum Reprod 20:1921–1927PubMedCrossRefPubMedCentralGoogle Scholar
  135. Sharma RK, Pasqualotto FF, Nelson DR, Thomas AJ Jr, Agarwal A (1999) The reactive oxygen species-total antioxidant capacity score is a new measure of oxidative stress to predict male infertility. Hum Reprod 14:2801–2807PubMedCrossRefPubMedCentralGoogle Scholar
  136. Sharma R, Agarwal A, Harlev A, Esteves SC (2017) A meta-analysis to study the effects of body mass index on sperm DNA fragmentation index in reproductive age men. Fertil Steril 108:e138–e139CrossRefGoogle Scholar
  137. Shiraishi K, Matsuyama H (2017) Gonadotoropin actions on spermatogenesis and hormonal therapies for spermatogenic disorders. Endocr J 64:123–131PubMedCrossRefPubMedCentralGoogle Scholar
  138. Showell MG, Mackenzie-Proctor R, Brown J, Yazdani A, Stankiewicz MT, Hart RJ (2014) Antioxidants for male subfertility. Cochrane Database Syst Rev:CD007411Google Scholar
  139. Simon L, Emery BR, Carrell DT (2017) Review: Diagnosis and impact of sperm DNA alterations in assisted reproduction. Best Pract Res Clin Obstet Gynaecol 44:38–56PubMedCrossRefPubMedCentralGoogle Scholar
  140. Smit M, Romijn JC, Wildhagen MF, Veldhoven JL, Weber RF, Dohle GR (2010) Decreased sperm DNA fragmentation after surgical varicocelectomy is associated with increased pregnancy rate. J Urol 183:270–274PubMedCrossRefPubMedCentralGoogle Scholar
  141. Steele EK, McClure N, Maxwell RJ, Lewis SE (1999) A comparison of DNA damage in testicular and proximal epididymal spermatozoa in obstructive azoospermia. Mol Hum Reprod 5(9):831–835PubMedCrossRefPubMedCentralGoogle Scholar
  142. Suganuma R, Yanagimachi R, Meistrich ML (2005) Decline in fertility of mouse sperm with abnormal chromatin during epididymal passage as revealed by ICSI. Hum Reprod 20(11):3101–3108PubMedCrossRefPubMedCentralGoogle Scholar
  143. Sun XL, Wang JL, Peng YP, Gao QQ, Song T, Yu W et al (2018) Bilateral is superior to unilateral varicocelectomy in infertile males with left clinical and right subclinical varicocele: a prospective randomized controlled study. Int Urol Nephrol 50:205–210PubMedCrossRefPubMedCentralGoogle Scholar
  144. Tavalaee M, Bahreinian M, Barekat F, Abbasi H, Nasr-Esfahani MH (2015) Effect of varicocelectomy on sperm functional characteristics and DNA methylation. Andrologia 47:904–909PubMedPubMedCentralGoogle Scholar
  145. Telli O, Sarici H, Kabar M, Ozgur BC, Resorlu B, Bozkurt S (2015) Does varicocelectomy affect DNA fragmentation in infertile patients? Indian J Urol 31:116–119PubMedPubMedCentralCrossRefGoogle Scholar
  146. Tremellen K (2008) Oxidative stress and male infertility—a clinical perspective. Hum Reprod Update 14:243–258PubMedCrossRefPubMedCentralGoogle Scholar
  147. Tunc O, Thompson J, Tremellen K (2009) Improvement in sperm DNA quality using an oral antioxidant therapy. Reprod Biomed Online 18:761–768PubMedCrossRefPubMedCentralGoogle Scholar
  148. Tvrdá E, López-Fernández C, Sánchez-Martín P, Gosálvez J (2018) Sperm DNA fragmentation in donors and normozoospermic patients attending for a first spermiogram: Static and dynamic assessment. Andrologia 50.  https://doi.org/10.1111/and.12986.. Epub ahead of print
  149. Vani K, Kurakula M, Syed R, Alharbi K (2012) Clinical relevance of vitamin C among lead-exposed infertile men. Genet Test Mol Biomarkers 16:1001–1006PubMedCrossRefGoogle Scholar
  150. Varshini J, Srinag BS, Kalthur G, Krishnamurthy H, Kumar P, Rao SB et al (2012) Poor sperm quality and advancing age are associated with increased sperm DNA damage in infertile men. Andrologia 44(Suppl 1):642–649PubMedCrossRefGoogle Scholar
  151. Vicari E (2000) Effectiveness and limits of antimicrobial treatment on seminal leukocyte concentration and related reactive oxygen species production in patients with male accessory gland infection. Hum Reprod 15:2536–2544PubMedCrossRefGoogle Scholar
  152. Werthman P, Wixon R, Kasperson K, Evenson DP (2008) Significant decrease in sperm deoxyribonucleic acid fragmentation after varicocelectomy. Fertil Steril 90:1800–1804PubMedCrossRefGoogle Scholar
  153. Zaazaa A, Adel A, Fahmy I, Elkhiat Y, Awaad AA, Mostafa T (2018) Effect of varicocelectomy and/or mast cells stabilizer on sperm DNA fragmentation in infertile patients with varicocele. Andrology 6:146–150PubMedCrossRefGoogle Scholar
  154. Zeyad A, Hamad M, Amor H, Hammadeh ME (2018) Relationships between bacteriospermia, DNA integrity, nuclear protamine alteration, sperm quality and ICSI outcome. Reprod Biol 18:115–121PubMedCrossRefGoogle Scholar
  155. Zhang J, Xue H, Qiu F, Zhong J, Su J (2019) Testicular spermatozoon is superior to ejaculated spermatozoon for intracytoplasmic sperm injection to achieve pregnancy in infertile males with high sperm DNA damage. Andrologia 51(2):e13175. https://doi.org/10.1111/and.13175
  156. Zhao J, Zhang Q, Wang Y, Li Y (2014a) Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnant and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil Steril 102:998–1005PubMedCrossRefPubMedCentralGoogle Scholar
  157. Zhao J, Zhang Q, Wang Y, Li Y (2014b) Whether sperm deoxyribonucleic acid fragmentation has an effect on pregnancy and miscarriage after in vitro fertilization/intracytoplasmic sperm injection: a systematic review and meta-analysis. Fertil Steril 102(4):998–1005.e1008PubMedCrossRefPubMedCentralGoogle Scholar
  158. Zhou DD, Hao JL, Guo KM, Lu CW, Liu XD (2016) Sperm quality and DNA damage in men from Jilin Province, China, who are occupationally exposed to ionizing radiation. Genet Mol Res 15(1)Google Scholar
  159. Zini A, Dohle G (2011) Are varicoceles associated with increased deoxyribonucleic acid fragmentation? Fertil Steril 96:1283–1287PubMedCrossRefPubMedCentralGoogle Scholar
  160. Zini A, Blumenfeld A, Libman J, Willis J (2005) Beneficial effect of microsurgical subinguinal varicocelectomy on human sperm DNA integrity. Hum Reprod 20:1018–1021PubMedCrossRefPubMedCentralGoogle Scholar
  161. Zylbersztejn DS, Andreoni C, Del Giudice PT, Spaine DM, Borsari L, Souza GH et al (2013) Proteomic analysis of seminal plasma in adolescents with and without varicocele. Fertil Steril 99:92–98PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ANDROFERT, Andrology and Human Reproduction Clinic, Referral Center for Male ReproductionCampinasBrazil
  2. 2.Department of Surgery (Division of Urology)University of Campinas (UNICAMP)CampinasBrazil
  3. 3.Faculty of HealthAarhus UniversityAarhusDenmark

Personalised recommendations