Advertisement

Sperm DNA Fragmentation: Mechanisms of Origin

  • Monica MuratoriEmail author
  • Sara Marchiani
  • Lara Tamburrino
  • Elisabetta Baldi
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1166)

Abstract

Spermatozoa have the task to deliver an intact paternal genome to the oocyte and to support a successful embryo development. The high levels of sperm DNA fragmentation (sDF) found in sub-/infertile men threat human reproduction and health of the offspring. Strategies to prevent the onset of this type of sperm damage are extensively sought.

sDF can be induced by factors like lifestyle-related habits, diseases, drugs, aging, infections and exposure to pollutants. At the cell level, all these factors induce sperm DNA breaks by three main mechanisms: apoptosis, impairment of sperm chromatin maturation and oxidative stress. Apoptosis and defects in maturation of sperm chromatin appear to act in the testis and account for DNA breaks found in dead ejaculated spermatozoa, whereas oxidative stress is likely inducing sDF during the transit through the male genital tracts and accounting for DNA breaks observed in viable spermatozoa of the ejaculate. Oxidative stress appears to be also the main mechanism responsible for induction of sDF after ejaculation, during in vitro manipulation of spermatozoa. Whether or not mature spermatozoa are able to trigger a cell death program is not yet clarified. In particular, it is not clear whether apoptotic nucleases or reactive oxygen species are responsible for producing DNA breaks in ejaculated mature spermatozoa. Knowledge of the mechanisms inducing sDF is a valuable starting point to define possible therapeutic options that however are still far to be established.

Keywords

Sperm DNA fragmentation Chromatin maturation Abortive apoptosis Oxidative stress Reactive oxygen species Male infertility 

References

  1. Agarwal A, Majzoub A, Esteves SC, Ko E, Ramasamy R, Zini A (2016) Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol 5:935–950PubMedPubMedCentralCrossRefGoogle Scholar
  2. Aitken RJ, Baker MA, Nixon B (2015) Are sperm capacitation and apoptosis the opposite ends of a continuum driven by oxidative stress? Asian J Androl 17:633–639PubMedPubMedCentralCrossRefGoogle Scholar
  3. Aitken RJ, Finnie JM, Muscio L, Whiting S, Connaughton HS, Kuczera L, Rothkirch TB, De Iuliis GN (2014) Potential importance of transition metals in the induction of DNA damage by sperm preparation media. Hum Reprod 29:2136–2147PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P (2016) Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev 28:1–10PubMedCrossRefGoogle Scholar
  5. Anifandis G, Bounartzi T, Messini CI, Dafopoulos K, Sotiriou S, Messinis IE (2014) The impact of cigarette smoking and alcohol consumption on sperm parameters and sperm DNA fragmentation (SDF) measured by Halosperm(®). Arch Gynecol Obstet 290:777–782PubMedCrossRefGoogle Scholar
  6. Antoniassi MP, Intasqui Lopes P, Camargo M, Zylbersztejn DS, Carvalho VM, Cardozo KH, Bertolla RP (2016) Analysis of the sperm functional aspects and seminal plasma proteomic profile from male smokers. BJU Int 118:814–822PubMedCrossRefGoogle Scholar
  7. Baccetti B, Collodel G, Piomboni P (1996) Apoptosis in human ejaculated sperm cells. (Notulae seminologicae 9). J Submicrosc Cytol Pathol 28:587–596PubMedGoogle Scholar
  8. Bandel I, Bungum M, Richtoff J, Malm J, Axelsson J, Pedersen HS, Ludwicki JK, Czaja K, Hernik A, Toft G, Bonde JP, Spanò M, Malm G, Haugen TB, Giwercman A (2015) No association between body mass index and sperm DNA integrity. Hum Reprod 30:1704–1713PubMedCrossRefGoogle Scholar
  9. Bojar I, Witczak M, Wdowiak A (2013) Biological and environmental conditionings for a sperm DNA fragmentation. Ann Agric Environ Med 20:865–868PubMedGoogle Scholar
  10. Bounartzi T, Dafopoulos K, Anifandis G, Messini CI, Koutsonikou C, Kouris S, Satra M, Sotiriou S, Vamvakopoulos N, Messinis IE (2016) Pregnancy prediction by free sperm DNA and sperm DNA fragmentation in semen specimens of IVF/ICSI-ET patients. Hum Fertil (Camb) 19:56–62CrossRefGoogle Scholar
  11. Bujan L, Walschaerts M, Brugnon F, Daudin M, Berthaut I, Auger J, Saias J, Szerman E, Moinard N, Rives N, Hennebicq S (2014) Impact of lymphoma treatments on spermatogenesis and sperm deoxyribonucleic acid: a multicenter prospective study from the CECOS network. Fertil Steril 102:667–674CrossRefGoogle Scholar
  12. Bujan L, Walschaerts M, Moinard N, Hennebicq S, Saias J, Brugnon F, Auger J, Berthaut I, Szerman E, Daudin M, Rives N (2013) Impact of chemotherapy and radiotherapy for testicular germ cell tumors on spermatogenesis and sperm DNA: a multicenter prospective study from the CECOS network. Fertil Steril 100:673–680CrossRefGoogle Scholar
  13. Campbell JM, Lane M, Owens JA, Bakos HW (2015) Paternal obesity negatively affects male fertility and assisted reproduction outcomes: a systematic review and meta-analysis. Reprod Biomed Online 31:593–604PubMedPubMedCentralCrossRefGoogle Scholar
  14. Condorelli RA, La Vignera S, Giacone F, Iacoviello L, Vicari E, Mongioi’ L, Calogero AE (2013) In vitro effects of nicotine on sperm motility and bio-functional flow cytometry sperm parameters. Int J Immunopathol Pharmacol 26:739–746PubMedCrossRefGoogle Scholar
  15. Condorelli RA, La Vignera S, Mongioì LM, Alamo A, Calogero AE (2018) Diabetes mellitus and infertility: different pathophysiological effects in type 1 and type 2 on sperm function. Front Endocrinol (Lausanne) 9:268CrossRefGoogle Scholar
  16. Connelly DA, Chan PJ, Patton WC, King A (2001) Human sperm deoxyribonucleic acid fragmentation by specific types of papillomavirus. Am J Obstet Gynecol 184:1068–1070PubMedCrossRefGoogle Scholar
  17. Cordelli E, Eleuteri P, Grollino MG, Benassi B, Blandino G, Bartoleschi C, Pardini MC, Di Caprio EV, Spanò M, Pacchierotti F, Villani P (2012) Direct and delayed X-ray-induced DNA damage in male mouse germ cells. Environ Mol Mutagen 53:429–439PubMedCrossRefGoogle Scholar
  18. Correia S, Cardoso HJ, Cavaco JE, Socorro S (2015) Oestrogens as apoptosis regulators in mammalian testis: angels or devils? Expert Rev Mol Med 17:e2PubMedCrossRefGoogle Scholar
  19. Cortés-Gutiérrez EI, Dávila-Rodríguez MI, Fernández JL, de la O-Pérez LO, Garza-Flores ME, Eguren-Garza R, Gosálvez J (2017) The presence of human papillomavirus in semen does not affect the integrity of sperm DNA. Andrologia 49(10)Google Scholar
  20. Cui X, Jing X, Wu X, Wang Z, Li Q (2016) Potential effect of smoking on semen quality through DNA damage and the downregulation of Chk1 in sperm. Mol Med Rep 14:753–761PubMedPubMedCentralCrossRefGoogle Scholar
  21. Esteves SC, Roque M, Bradley CK, Garrido N (2017) Reproductive outcomes of testicular versus ejaculated sperm for intracytoplasmic sperm injection among men with high levels of DNA fragmentation in semen: systematic review and meta-analysis. Fertil Steril 108:456–467PubMedPubMedCentralCrossRefGoogle Scholar
  22. Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, de Angelis P, Claussen OP (1999) Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod 14:1039–1049PubMedCrossRefGoogle Scholar
  23. Fernández-Gonzalez R, Moreira PN, Pérez-Crespo M, Sánchez-Martín M, Ramirez MA, Pericuesta E, Bilbao A, Bermejo-Alvarez P, de Dios Hourcade J, de Fonseca FR, Gutiérrez-Adán A (2008) Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol Reprod 78:761–772PubMedCrossRefGoogle Scholar
  24. Ferramosca A, Conte A, Moscatelli N, Zara V (2016) A high-fat diet negatively affects rat sperm mitochondrial respiration. Andrology 4:520–525PubMedCrossRefGoogle Scholar
  25. Fujita Y, Mihara T, Okazaki T, Shitanaka M, Kushino R, Ikeda C, Negishi H, Liu Z, Richards JS, Shimada M (2011) Toll-like receptors (TLR) 2 and 4 on human sperm recognize bacterial endotoxins and mediate apoptosis. Hum Reprod 26:2799–2806PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gallegos G, Ramos B, Santiso R, Goyanes V, Gosálvez J, Fernández JL (2008) Sperm DNA fragmentation in infertile men with genitourinary infection by Chlamydia trachomatis and Mycoplasma. Fertil Steril 90:328–334PubMedPubMedCentralCrossRefGoogle Scholar
  27. Giwercman A, Spanò M (2014) Sperm chromatin and environmental factors. In: Zini A, Agarwal A (eds) A clinician’s guide to sperm DNA and chromatin damage. Springer, New YorkGoogle Scholar
  28. Giwercman A, Lindstedt L, Larsson M, Bungum M, Spano M, Levine RJ, Rylander L (2010) Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case-control study. Int J Androl 33:e221–e227PubMedPubMedCentralCrossRefGoogle Scholar
  29. Gomes M, Gonçalves A, Rocha E, Sá R, Alves A, Silva J, Barros A, Pereira ML, Sousa M (2015) Effect of in vitro exposure to lead chloride on semen quality and sperm DNA fragmentation. Zygote 23:384–393PubMedCrossRefGoogle Scholar
  30. Gorczyca W, Traganos F, Jesionowska H, Darzynkiewicz Z (1993) Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res 207:202–205CrossRefGoogle Scholar
  31. Gorpinchenko I, Nikitin O, Banyra O, Shulyak A (2014) The influence of direct mobile phone radiation on sperm quality. Cent Eur J Urol 67:65–71Google Scholar
  32. Gregoire M-C, Massonneau J, Simard O, Gouraud A, Brazeau M-A, Arguin M et al (2013) Male-driven de novo mutations in haploid germ cells. Mol Hum Reprod 19:495–499PubMedCrossRefGoogle Scholar
  33. Grizard G, Roddier H, Artonne C, Sion B, Vasson MP, Janny L (2007) In vitro alachlor effects on reactive oxygen species generation, motility patterns and apoptosis markers in human spermatozoa. Reprod Toxicol 23:55–62PubMedCrossRefGoogle Scholar
  34. Haines GA, Hendry JH, Daniel CP, Morris ID (2001) Increased levels of comet-detected spermatozoa DNA damage following in vivo isotopic- or X-irradiation of spermatogonia. Mutat Res 495:21–32PubMedCrossRefGoogle Scholar
  35. Humm KC, Sakkas D (2013) Role of increased male age in IVF and egg donation: is sperm DNA fragmentation responsible? Fertil Steril 99:30–36PubMedCrossRefGoogle Scholar
  36. Ishikawa T, Fujioka H, Ishimura T, Takenaka A, Fujisawa M (2007) Increased testicular 8-hydroxy-2′-deoxyguanosine in patients with varicocele. BJU Int 100:863–866PubMedPubMedCentralCrossRefGoogle Scholar
  37. Johnson SL, Dunleavy J, Gemmell NJ, Nakagawa S (2015) Consistent age-dependent declines in human semen quality: a systematic review and meta-analysis. Ageing Res Rev 19:22–33PubMedCrossRefGoogle Scholar
  38. Jurewicz J, Radwan M, Sobala W, Radwan P, Bochenek M, Hanke W (2018) Dietary patterns and their relationship with semen quality. Am J Mens Health 12:575–583PubMedPubMedCentralCrossRefGoogle Scholar
  39. Kang X, Xie Q, Zhou X, Li F, Huang J, Liu D, Huang T (2012) Effects of hepatitis B virus S protein exposure on sperm membrane integrity and functions. PLoS One 7:e33471PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kaspersen MD, Bungum M, Fedder J, Bonde J, Larsen PB, J Ingerslev H, Höllsberg P (2013) No increased sperm DNA fragmentation index in semen containing human papillomavirus or herpesvirus. Andrology 1:361–364PubMedCrossRefGoogle Scholar
  41. Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, Gudjonsson SA, Sigurdsson A, Jonasdottir A, Jonasdottir A, Wong WS, Sigurdsson G, Walters GB, Steinberg S, Helgason H, Thorleifsson G, Gudbjartsson DF, Helgason A, Magnusson OT, Thorsteinsdottir U, Stefansson K (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488:471–475PubMedPubMedCentralCrossRefGoogle Scholar
  42. Koppers AJ, Mitchell LA, Wang P, Lin M, Aitken RJ (2011) Phosphoinositide 3-kinase signalling pathway involvement in a truncated apoptotic cascade associated with motility loss and oxidative DNA damage in human spermatozoa. Biochem J 436:687–698PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kumar D, Salian SR, Kalthur G, Uppangala S, Kumari S, Challapalli S, Chandraguthi SG, Krishnamurthy H, Jain N, Kumar P, Adiga SK (2013) Semen abnormalities, sperm DNA damage and global hypermethylation in health workers occupationally exposed to ionizing radiation. PLoS One 8:e69927PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kumar K, Lewis S, Vinci S, Riera-Escamilla A, Fino MG, Tamburrino L, Muratori M, Larsen P, Krausz C (2018) Evaluation of sperm DNA quality in men presenting with testicular cancer and lymphoma using alkaline and neutral Comet assays. Andrology 6:230–235CrossRefGoogle Scholar
  45. Lotti F, Tamburrino L, Marchiani S, Maseroli E, Vitale P, Forti G, Muratori M, Maggi M, Baldi E (2017) DNA fragmentation in two cytometric sperm populations: relationship with clinical and ultrasound characteristics of the male genital tract. Asian J Androl 19:272–279PubMedCrossRefGoogle Scholar
  46. Lozano GM, Bejarano I, Espino J, González D, Ortiz A, García JF, Rodríguez AB, Pariente JA (2009) Relationship between caspase activity and apoptotic markers in human sperm in response to hydrogen peroxide and progesterone. J Reprod Dev 55:615–621PubMedCrossRefGoogle Scholar
  47. Marchiani S, Tamburrino L, Maoggi A, Vannelli GB, Forti G, Baldi E, Muratori M (2007) Characterization of M540 bodies in human semen: evidence that they are apoptotic bodies. Mol Hum Reprod 13:621–631PubMedCrossRefGoogle Scholar
  48. Marcon L, Boissonneault G (2004) Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod 70:910–918PubMedCrossRefGoogle Scholar
  49. Martin JA, Hamilton BE, Ventura SJ, Osterman MJ, Kirmeyer S, Mathews TJ, Wilson EC (2011) Births: final data for 2009. Natl Vital Stat Rep 60:1–70PubMedGoogle Scholar
  50. Martínez-Pastor F, Aisen E, Fernández-Santos MR, Esteso MC, Maroto-Morales A, García-Alvarez O, Garde JJ (2009) Reactive oxygen species generators affect quality parameters and apoptosis markers differently in red deer spermatozoa. Reproduction 137:225–235PubMedCrossRefGoogle Scholar
  51. Martini AC, Molina RI, Estofán D, Senestrari D, Fiol de Cuneo M, Ruiz RD (2004) Effects of alcohol and cigarette consumption on human seminal quality. Fertil Steril 82:374–377PubMedCrossRefGoogle Scholar
  52. Mc Pherson SMG, Longo FJ (1993) Chromatin structurefunction alterations during mammalian spermatogenesis: origin and significance of sperm DNA fragmentation 1497 DNA nicking and repair in elongating spermatids. Eur J Histochem 37:109–128Google Scholar
  53. Meseguer M, Santiso R, Garrido N, Fernandez JL (2008) The effect of cancer on sperm DNA fragmentation as measured by the sperm chromatin dispersion test. Fertil Steril 90:225–227CrossRefGoogle Scholar
  54. Mitchell LA, De Iuliis GN, Aitken RJ (2010) The TUNEL assay consistently underestimates DNA damage in human spermatozoa and is influenced by DNA compaction and cell vitality: development of an improved methodology. Int J Androl 34:2–13CrossRefGoogle Scholar
  55. Mitra A, Chakraborty B, Mukhopadhay D, Pal M, Mukherjee S, Banerjee S, Chaudhuri K (2012) Effect of smoking on semen quality, FSH, testosterone level, and CAG repeat length in androgen receptor gene of infertile men in an Indian city. Syst Biol Reprod Med 58:255–262PubMedCrossRefGoogle Scholar
  56. Moskovtsev SI, Willis J, Mullen JB (2006) Age-related decline in sperm deoxyribonucleic acid integrity in patients evaluated for male infertility. Fertil Steril 85:496–499PubMedCrossRefGoogle Scholar
  57. Muratori M, Baldi E (2018) Effects of FSH on sperm DNA fragmentation: review of clinical studies and possible mechanisms of action. Front Endocrinol (Lausanne) 9:734CrossRefGoogle Scholar
  58. Muratori M, Maggi M, Spinelli S, Filimberti E, Forti G, Baldi E (2003) Spontaneous DNA fragmentation in swim-up selected human spermatozoa during long term incubation. J Androl 24:253–262PubMedCrossRefGoogle Scholar
  59. Muratori M, Marchiani S, Tamburrino L, Cambi M, Lotti F, Natali I et al (2015a) DNA fragmentation in brighter sperm predicts male fertility independently from age and semen parameters. Fertil Steril 104:582–590. e4PubMedCrossRefGoogle Scholar
  60. Muratori M, Tamburrino L, Marchiani S, Cambi M, Olivito B, Azzari C, Forti G, Baldi E (2015b) Investigation on the origin of sperm DNA fragmentation: role of apoptosis, immaturity and oxidative stress. Mol Med 21:109–122PubMedPubMedCentralCrossRefGoogle Scholar
  61. Muratori M, Tarozzi N, Cambi M, Boni L, Iorio AL, Passaro C, Luppino B, Nadalini M, Marchiani S, Tamburrino L, Forti G, Maggi M, Baldi E, Borini A (2016) Variation of DNA fragmentation levels during density gradient sperm selection for assisted reproduction techniques: a possible new male predictive parameter of pregnancy? Medicine (Baltimore) 95:e3624CrossRefGoogle Scholar
  62. O’Donovan M (2005) An evaluation of chromatin condensation and DNA integrity in the spermatozoa of men with cancer before and after therapy. Andrologia 37:83–90PubMedCrossRefGoogle Scholar
  63. O’Flaherty C, Vaisheva F, Hales BF, Chan P, Robaire B (2008) Characterization of sperm chromatin quality in testicular cancer and Hodgkin’s lymphoma patients prior to chemotherapy. Hum Reprod 23:1044–1052CrossRefGoogle Scholar
  64. O’Flaherty C (2014) Iatrogenic genetic damage of spermatozoa. Adv Exp Med Biol 791:117–135PubMedPubMedCentralCrossRefGoogle Scholar
  65. Oliveira H, Spanò M, Santos C (2009) Pereira MeL. Adverse effects of cadmium exposure on mouse sperm. Reprod Toxicol 28:550–555PubMedCrossRefGoogle Scholar
  66. Paoli D, Gallo M, Rizzo F, Spanò M, Leter G, Lombardo F, Lenzi A, Gandini L (2015) Testicular cancer and sperm DNA damage: short- and long-term effects of antineoplastic treatment. Andrology 3:122–128CrossRefGoogle Scholar
  67. Radwan M, Jurewicz J, Merecz-Kot D et al (2016) Sperm DNA damage-the effect of stress and everyday life factors. Int J Impot Res 28:148–154PubMedCrossRefGoogle Scholar
  68. Rama Raju GA, Jaya Prakash G, Murali Krishna K, Madan K, Siva Narayana T, Ravi Krishna CH (2012) Noninsulin-dependent diabetes mellitus: effects on sperm morphological and functional characteristics, nuclear DNA integrity and outcome of assisted reproductive technique. Andrologia 44 Suppl 1:490–498PubMedCrossRefGoogle Scholar
  69. Rives N, Perdrix A, Hennebicq S, Saïas-Magnan J, Melin MC, Berthaut I et al (2012) The semen quality of 1158 men with testicular cancer at the time of cryopreservation: results of the French National CECOS Network. J Androl 33:1394–1401PubMedCrossRefGoogle Scholar
  70. Robbins WA, Vine MF, Truong KY, Everson RB (1997) Use of fluorescence in situ hybridization (FISH) to assess effects of smoking, caffeine, and alcohol on aneuploidy load in sperm of healthy men. Environ Mol Mutagen 30:175–183PubMedCrossRefGoogle Scholar
  71. Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S et al (2012) The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod 27:2908–2917PubMedPubMedCentralCrossRefGoogle Scholar
  72. Roessner C, Paasch U, Kratzsch J, Glander HJ, Grunewald S (2012) Sperm apoptosis signalling in diabetic men. Reprod Biomed Online 25:292–299PubMedCrossRefGoogle Scholar
  73. Roque M, Esteves SC (2014) Varicocelectomy. In: Zini A, Agarwal A (eds) A clinician’s guide to sperm DNA and chromatin damage. Springer, New YorkGoogle Scholar
  74. Rybar R, Kopecka V, Prinosilova P, Markova P, Rubes J (2011) Male obesity and age in relationship to semen parameters and sperm chromatin integrity. Andrologia 43:286–291PubMedCrossRefGoogle Scholar
  75. Sakkas D, Mariethoz E, St John JC (1999) Abnormal sperm parameters in humans are indicative of an abortive apoptotic mechanism linked to the Fas-mediated pathway. Exp Cell Res 251:350–355PubMedCrossRefGoogle Scholar
  76. Sakkas D, Manicardi G, Bianchi PG, Bizzaro D, Bianchi U (1995) Relationship between the presence of endogenous nicks and sperm chromatin packaging in maturing and fertilizing mouse spermatozoa. Biol Reprod 52:1149–1155PubMedCrossRefGoogle Scholar
  77. Santi D, Spaggiari G, Simoni M (2018) Sperm DNA fragmentation index as a promising predictive tool for male infertility diagnosis and treatment management - meta-analyses. Reprod Biomed Online 37:315–326PubMedCrossRefGoogle Scholar
  78. Sasikumar S, Dakshayani D, Sarasa D (2013) An investigation of DNA fragmentation and morphological changes caused by bacteria and fungi in human spermatozoa. Int J Curr Microbiol App Sci 2:84–96Google Scholar
  79. Schmid TE, Eskenazi B, Baumgartner A, Marchetti F, Young S, Weldon R et al (2007) The effects of male age on sperm DNA damage in healthy nonsmokers. Hum Reprod 22:180–187PubMedCrossRefGoogle Scholar
  80. Sellami H, Znazen A, Sellami A, Mnif H, Louati N, Ben Zarrouk S, Keskes L, Rebai T, Gdoura R, Hammami A (2014) Molecular detection of Chlamydia trachomatis and other sexually transmitted bacteria in semen of male partners of infertile couples in Tunisia: the effect on semen parameters and spermatozoa apoptosis markers. PLoS One 9:e98903PubMedPubMedCentralCrossRefGoogle Scholar
  81. Showell MG, Mackenzie-Proctor R, Brown J, Yazdani A, Stankiewicz MT, Hart RJ (2014) Antioxidants for male subfertility. Cochrane Database Syst Rev:CD007411Google Scholar
  82. Simon L, Zini A, Dyachenko A, Ciampi A, Carrell DT (2017) A systematic review and meta-analysis to determine the effect of sperm DNA damage on in vitro fertilization and intracytoplasmic sperm injection outcome. Asian J Androl 19:80–90PubMedGoogle Scholar
  83. Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria independent pathways of apoptosis. Arch Toxicol 87:1157–1180PubMedCrossRefGoogle Scholar
  84. Smith TB, Dun MD, Smith ND, Curry BJ, Connaughton HS, Aitken RJ (2013) The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1. J Cell Sci 126:1488–1497PubMedPubMedCentralCrossRefGoogle Scholar
  85. Sotolongo B, Huang TT, Isenberger E, Ward WS (2005) An endogenous nuclease in hamster, mouse, and human spermatozoa cleaves DNA into loop-sized fragments. J Androl 26:272–280PubMedCrossRefGoogle Scholar
  86. Ståhl O, Eberhard J, Cavallin-Ståhl E, Jepson K, Friberg B, Tingsmark C et al (2009) Sperm DNA integrity in cancer patients: the effect of disease and treatment. Int J Androl 32:695–703PubMedCrossRefGoogle Scholar
  87. Vaidya A, Mao Z, Tian X, Spencer B, Seluanov A, Gorbunova V (2014) Knock-in reporter mice demonstrate that DNA repair by non-homologous end joining declines with age. Hasty P, editor. PLoS Genet 10:e1004511PubMedPubMedCentralCrossRefGoogle Scholar
  88. Villegas J, Schulz M, Soto L, Sanchez R (2005) Bacteria induce expression of apoptosis in human spermatozoa. Apoptosis 10:105–110PubMedCrossRefGoogle Scholar
  89. Vujkovic M, de Vries JH, Dohle GR et al (2009) Associations between dietary patterns and semen quality in men undergoing IVF/ICSI treatment. Hum Reprod 24:1304–1312PubMedCrossRefGoogle Scholar
  90. Wyrobek AJ, Eskenazi B, Young S, Arnheim N, Tiemann-Boege I, Jabs EW et al (2006) Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci U S A 103:9601–9606PubMedPubMedCentralCrossRefGoogle Scholar
  91. Yatsenko AN, Turek PJ (2018) Reproductive genetics and the aging male. J Assist Reprod Genet 35:933–941PubMedPubMedCentralCrossRefGoogle Scholar
  92. Zalata A, El-Samanoudy AZ, Shaalan D, El-Baiomy Y, Mostafa T (2015) In vitro effect of cell phone radiation on motility, DNA fragmentation and clusterin gene expression in human sperm. Int J Fertil Steril 9:129–136PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Monica Muratori
    • 1
    Email author
  • Sara Marchiani
    • 2
  • Lara Tamburrino
    • 2
  • Elisabetta Baldi
    • 2
  1. 1.Department of Experimental and Clinical Biomedical Sciences “Mario Serio”Unit of Sexual Medicine and Andrology, Center of Excellence DeNothe, University of FlorenceFlorenceItaly
  2. 2.Department of Experimental and Clinical MedicineUnit of Sexual Medicine and Andrology, Center of Excellence DeNothe, University of FlorenceFlorenceItaly

Personalised recommendations