Age-Dependent De Novo Mutations During Spermatogenesis and Their Consequences

  • Francesca Cioppi
  • Elena Casamonti
  • Csilla KrauszEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1166)


Spermatogenesis is a highly complex biological process during which germ cells undergo recurrent rounds of DNA replication and cell division that may predispose to random mutational events. Hence, germ cells are vulnerable to the introduction of a range of de novo mutations, in particular chromosomal aberrations, point mutations and small indels. The main mechanisms through which mutations may occur during spermatogenesis are (i) errors in DNA replication, (ii) inefficient repair of non-replicative DNA damage between cell divisions and (iii) exposure to mutagens during lifetime. Any genetic alteration in the spermatozoa, if not repaired/eliminated, can be passed on to the offspring, potentially leading to malformations, chromosomal anomalies and monogenic diseases. Spontaneous de novo mutations tend to arise and accumulate with a higher frequency during testicular aging. In fact, there is an increased incidence of some chromosomal aberrations and a greater risk of congenital disorders, collectively termed paternal age effect (PAE), in children conceived by fathers with advanced age. PAE disorders are related to well-characterized de novo point mutations leading to a selective advantage on the mutant spermatogonial stem cells that cause a progressive enrichment over time of mutant spermatozoa in the testis.

The purpose of this chapter is to provide a summary on the spontaneous genetic alterations that occur during spermatogenesis, focusing on their underlying mechanisms and their consequences in the offspring.


Genetics Spermatogenesis Y microdeletions PAE mutations Paternal aging Spontaneous mutations Infertility Spermatozoa PAE disorders Genomic anomalies 


  1. Aitken RJ (1999) The Amoroso Lecture. The human spermatozoon--a cell in crisis? J Reprod Fertil 115(1):1–7PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aitken RJ, Krausz C (2001) Oxidative stress, DNA damage and the Y chromosome. Reproduction (Cambridge, England) 122(4):497–506CrossRefGoogle Scholar
  3. Aksglaede L, Juul A (2013) Therapy of endocrine disease: testicular function and fertility in men with Klinefelter syndrome: a review. Eur J Endocrinol 168(4):R67–R76PubMedCrossRefPubMedCentralGoogle Scholar
  4. Aoki Y et al (2008) The RAS/MAPK syndromes: novel roles of the RAS pathway in human genetic disorders. Hum Mutat 29(8):992–1006PubMedCrossRefPubMedCentralGoogle Scholar
  5. Asada H et al (2000) The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J Assist Reprod Genet 17(1):51–59PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bansal SK et al (2016) Gr/gr deletions on Y-chromosome correlate with male infertility: an original study, meta-analyses, and trial sequential analyses. Sci Rep 6(1):19798PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baptista J et al (2008) Breakpoint mapping and array CGH in translocations: comparison of a phenotypically normal and an abnormal cohort. Am J Hum Genet 82(4):927–936PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bellus GA et al (1995) Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am J Hum Genet 56(2):368–373PubMedPubMedCentralGoogle Scholar
  9. Besenbacher S et al (2015) Novel variation and de novo mutation rates in population-wide de novo assembled Danish trios. Nat Commun 6(1):5969PubMedPubMedCentralCrossRefGoogle Scholar
  10. Blanco P et al (2000) Divergent outcomes of intrachromosomal recombination on the human Y chromosome: male infertility and recurrent polymorphism. J Med Genet 37(10):752–758PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bosch M et al (2001) Linear increase of diploidy in human sperm with age: a four-colour FISH study. Eur J Hum Genet 9(7):533–538PubMedCrossRefGoogle Scholar
  12. Bosch M et al (2003) Linear increase of structural and numerical chromosome 9 abnormalities in human sperm regarding age. Eur J Hum Genet 11(10):754–759PubMedCrossRefGoogle Scholar
  13. Brown AS et al (2002) Paternal age and risk of schizophrenia in adult offspring. Am J Psychiatry 159(9):1528–1533PubMedPubMedCentralCrossRefGoogle Scholar
  14. Byrne M et al (2003) Parental age and risk of schizophrenia: a case-control study. Arch Gen Psychiatry 60(7):673–678PubMedCrossRefGoogle Scholar
  15. Calogero AE et al (2017) Klinefelter syndrome: cardiovascular abnormalities and metabolic disorders. J Endocrinol Invest 40(7):705–712PubMedCrossRefGoogle Scholar
  16. Campbell CD, Eichler EE (2013) Properties and rates of germline mutations in humans. Trends Genet 29(10):575–584PubMedPubMedCentralCrossRefGoogle Scholar
  17. Campbell IM et al (2014) Parent of origin, mosaicism, and recurrence risk: probabilistic modeling explains the broken symmetry of transmission genetics. Am J Hum Genet 95(4):345–359PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chianese C, Brilli S, Krausz C (2014) Genomic changes in spermatozoa of the aging male. Adv Exp Med Biol 791:13–26PubMedCrossRefGoogle Scholar
  19. Choi S-K et al (2008) A germ-line-selective advantage rather than an increased mutation rate can explain some unexpectedly common human disease mutations. Proc Natl Acad Sci U S A 105(29):10143–10148PubMedPubMedCentralCrossRefGoogle Scholar
  20. Choi S-K et al (2012) Positive selection for new disease mutations in the human germline: evidence from the heritable cancer syndrome multiple endocrine neoplasia type 2B. PLoS Genet. Payseur BA (ed) 8(2):e1002420PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chong JX et al (2015) The genetic basis of mendelian phenotypes: discoveries, challenges, and opportunities. Am J Hum Genet 97(2):199–215PubMedPubMedCentralCrossRefGoogle Scholar
  22. Conrad DF et al (2011) Variation in genome-wide mutation rates within and between human families. Nat Genet 43(7):712–714PubMedPubMedCentralCrossRefGoogle Scholar
  23. Crow JF (2000) The origins, patterns and implications of human spontaneous mutation. Nat Rev Genet 1(1):40–47PubMedCrossRefGoogle Scholar
  24. D’Onofrio BM et al (2014) Paternal age at childbearing and offspring psychiatric and academic morbidity. JAMA Psychiat 71(4):432CrossRefGoogle Scholar
  25. Dakouane Giudicelli M et al (2008) Increased achondroplasia mutation frequency with advanced age and evidence for G1138A mosaicism in human testis biopsies. Fertil Steril 89(6):1651–1656PubMedCrossRefGoogle Scholar
  26. de Ligt J et al (2012) Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 367(20):1921–1929CrossRefGoogle Scholar
  27. Deciphering Developmental Disorders Study, Fitzgerald TW, et al (2015) Large-scale discovery of novel genetic causes of developmental disorders. Nature 519(7542):223–228Google Scholar
  28. Durkin MS et al (2008) Advanced parental age and the risk of autism spectrum disorder. Am J Epidemiol 168(11):1268–1276PubMedPubMedCentralCrossRefGoogle Scholar
  29. Eble JN (1994) Spermatocytic seminoma. Hum Pathol 25(10):1035–1042PubMedCrossRefGoogle Scholar
  30. Eboreime J et al (2016) Estimating exceptionally rare germline and somatic mutation frequencies via next generation sequencing. PLoS One. Lo AWI (ed) 11(6):e0158340PubMedPubMedCentralCrossRefGoogle Scholar
  31. Eloualid A et al (2012) Association of spermatogenic failure with the b2/b3 partial AZFc deletion. PLoS One. Chadwick BP (ed) 7(4):e34902PubMedPubMedCentralCrossRefGoogle Scholar
  32. Epi4K Consortium et al (2013) De novo mutations in epileptic encephalopathies. Nature 501(7466):217–221CrossRefGoogle Scholar
  33. Francioli LC et al (2015) Genome-wide patterns and properties of de novo mutations in humans. Nat Genet 47(7):822–826PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gao Z et al (2016) Interpreting the dependence of mutation rates on age and time. PLoS Biol. Barton NH (ed) 14(1):e1002355PubMedPubMedCentralCrossRefGoogle Scholar
  35. Giachini C et al (2008) Partial AZFc deletions and duplications: clinical correlates in the Italian population. Hum Genet 124(4):399–410PubMedCrossRefPubMedCentralGoogle Scholar
  36. Giannoulatou E et al (2013) Contributions of intrinsic mutation rate and selfish selection to levels of de novo HRAS mutations in the paternal germline. Proc Natl Acad Sci 110(50):20152–20157PubMedCrossRefPubMedCentralGoogle Scholar
  37. Gilman SR et al (2011) Rare de novo variants associated with autism implicate a large functional network of genes involved in formation and function of synapses. Neuron 70(5):898–907PubMedPubMedCentralCrossRefGoogle Scholar
  38. Goldmann JM et al (2018) Author Correction: parent-of-origin-specific signatures of de novo mutations. Nat Genet 50(11):1615PubMedCrossRefPubMedCentralGoogle Scholar
  39. Goriely A (2016) Decoding germline de novo point mutations. Nat Genet 48(8):823–824PubMedCrossRefPubMedCentralGoogle Scholar
  40. Goriely A, Wilkie AOM (2012) Paternal age effect mutations and selfish Spermatogonial selection: causes and consequences for human disease. Am J Hum Genet 90(2):175–200PubMedPubMedCentralCrossRefGoogle Scholar
  41. Goriely A et al (2003) Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line. Science (New York, NY) 301(5633):643–646CrossRefGoogle Scholar
  42. Goriely A et al (2005) Gain-of-function amino acid substitutions drive positive selection of FGFR2 mutations in human spermatogonia. Proc Natl Acad Sci 102(17):6051–6056PubMedCrossRefGoogle Scholar
  43. Goriely A et al (2009) Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors. Nat Genet 41(11):1247–1252PubMedPubMedCentralCrossRefGoogle Scholar
  44. Goriely A et al (2013) Selfish spermatogonial selection: a novel mechanism for the association between advanced paternal age and neurodevelopmental disorders. Am J Psychiatry. Europe PMC Funders 170(6):599–608PubMedPubMedCentralCrossRefGoogle Scholar
  45. Green RF et al (2010) Association of paternal age and risk for major congenital anomalies from the National Birth Defects Prevention Study, 1997 to 2004. Ann Epidemiol 20(3):241–249PubMedPubMedCentralCrossRefGoogle Scholar
  46. Grether JK et al (2009) Risk of autism and increasing maternal and paternal age in a large north American population. Am J Epidemiol 170(9):1118–1126PubMedCrossRefGoogle Scholar
  47. Griffin DK et al (1995) Non-disjunction in human sperm: evidence for an effect of increasing paternal age. Hum Mol Genet 4(12):2227–2232PubMedCrossRefGoogle Scholar
  48. Guttenbach M et al (2000) Meiotic nondisjunction of chromosomes 1, 17, 18, X, and Y in men more than 80 years of age. Biol Reprod 63(6):1727–1729PubMedCrossRefGoogle Scholar
  49. Hansen RMS et al (2005) Fibroblast growth factor receptor 2, gain-of-function mutations, and tumourigenesis: investigating a potential link. J Pathol 207(1):27–31PubMedCrossRefGoogle Scholar
  50. Hassold TJ (1998) Nondisjunction in the human male. Curr Top Dev Biol 37:383–406PubMedCrossRefPubMedCentralGoogle Scholar
  51. Hassold T, Hunt P (2001) To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2(4):280–291PubMedCrossRefPubMedCentralGoogle Scholar
  52. Hassold T, Hunt P (2009) Maternal age and chromosomally abnormal pregnancies: what we know and what we wish we knew. Curr Opin Pediatr 21(6):703–708PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hassold T, Hunt PA, Sherman S (1993) Trisomy in humans: incidence, origin and etiology. Curr Opin Genet Dev 3(3):398–403PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hoischen A, Krumm N, Eichler EE (2014) Prioritization of neurodevelopmental disease genes by discovery of new mutations. Nat Neurosci 17(6):764–772PubMedPubMedCentralCrossRefGoogle Scholar
  55. Ioannou D, Tempest HG (2015) Meiotic nondisjunction: insights into the origin and significance of aneuploidy in human spermatozoa. Adv Exp Med Biol 868:1–21PubMedCrossRefGoogle Scholar
  56. Ioannou D, Fortun J, Tempest H (2018) Meiotic nondisjunction and sperm aneuploidy in humans. Reproduction. PMID: 30390610
  57. Iossifov I et al (2014) The contribution of de novo coding mutations to autism spectrum disorder. Nature 515(7526):216–221PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kalkman HO (2006) The role of the phosphatidylinositide 3-kinase-protein kinase B pathway in schizophrenia. Pharmacol Ther 110(1):117–134PubMedCrossRefGoogle Scholar
  59. Kamp C et al (2000) Two long homologous retroviral sequence blocks in proximal Yq11 cause AZFa microdeletions as a result of intrachromosomal recombination events. Hum Mol Genet 9(17):2563–2572PubMedCrossRefGoogle Scholar
  60. Kan S et al (2002) Genomic screening of fibroblast growth-factor receptor 2 reveals a wide spectrum of mutations in patients with syndromic craniosynostosis. Am J Hum Genet 70(2):472–486PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kéri S et al (2009) Neuregulin 1-stimulated phosphorylation of AKT in psychotic disorders and its relationship with neurocognitive functions. Neurochem Int 55(7):606–609PubMedCrossRefPubMedCentralGoogle Scholar
  62. Kim JY et al (2009) DISC1 regulates new neuron development in the adult brain via modulation of AKT-mTOR signaling through KIAA1212. Neuron 63(6):761–773PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kim IW et al (2013) 47,XYY syndrome and male infertility. Rev Urol 15(4):188–196PubMedPubMedCentralGoogle Scholar
  64. Kinakin B, Rademaker A, Martin R (1997) Paternal age effect of YY aneuploidy in human sperm, as assessed by fluorescence in situ hybridization. Cytogenet Cell Genet 78(2):116–119PubMedCrossRefPubMedCentralGoogle Scholar
  65. Klejbor I et al (2006) Fibroblast growth factor receptor signaling affects development and function of dopamine neurons – inhibition results in a schizophrenia-like syndrome in transgenic mice. J Neurochem 97(5):1243–1258PubMedCrossRefPubMedCentralGoogle Scholar
  66. Kong A et al (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488(7412):471–475PubMedPubMedCentralCrossRefGoogle Scholar
  67. Krab LC, Goorden SMI, Elgersma Y (2008) Oncogenes on my mind: ERK and MTOR signaling in cognitive diseases. Trends Genet 24(10):498–510PubMedCrossRefPubMedCentralGoogle Scholar
  68. Kratz CP et al (2009) Craniosynostosis in patients with Noonan syndrome caused by germline KRAS mutations. Am J Med Genet A 149A(5):1036–1040PubMedCrossRefPubMedCentralGoogle Scholar
  69. Krausz C, Casamonti E (2017) Spermatogenic failure and the Y chromosome. Hum Genet 136(5):637–655PubMedCrossRefPubMedCentralGoogle Scholar
  70. Krausz C, Degl’Innocenti S (2006) Y chromosome and male infertility: update, 2006. Front Biosci 11:3049–3061PubMedCrossRefPubMedCentralGoogle Scholar
  71. Krausz C et al (2006) Natural transmission of USP9Y gene mutations: a new perspective on the role of AZFa genes in male fertility. Hum Mol Genet 15(18):2673–2681PubMedCrossRefPubMedCentralGoogle Scholar
  72. Krausz C et al (2014) EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013. Andrology 2(1):5–19PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kurahashi H et al (2009) Recent advance in our understanding of the molecular nature of chromosomal abnormalities. J Hum Genet 54(5):253–260PubMedCrossRefPubMedCentralGoogle Scholar
  74. Kuroda-Kawaguchi T et al (2001) The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat Genet 29(3):279–286PubMedCrossRefPubMedCentralGoogle Scholar
  75. Lange J et al (2009) Isodicentric Y chromosomes and sex disorders as byproducts of homologous recombination that maintains palindromes. Cell 138(5):855–869PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lim J et al (2011) OCT2, SSX and SAGE1 reveal the phenotypic heterogeneity of spermatocytic seminoma reflecting distinct subpopulations of spermatogonia. J Pathol 224(4):473–483PubMedPubMedCentralCrossRefGoogle Scholar
  77. Lim J et al (2012) Selfish spermatogonial selection: evidence from an immunohistochemical screen in testes of elderly men. PLoS One. Shipley J (ed) 7(8):e42382PubMedPubMedCentralCrossRefGoogle Scholar
  78. Lin Y-W et al (2007) Partial duplication at AZFc on the Y chromosome is a risk factor for impaired spermatogenesis in Han Chinese in Taiwan. Hum Mutat 28(5):486–494PubMedCrossRefPubMedCentralGoogle Scholar
  79. Lo Giacco D et al (2014) Clinical relevance of Y-linked CNV screening in male infertility: new insights based on the 8-year experience of a diagnostic genetic laboratory. Eur J Hum Genet 22(6):754–761PubMedCrossRefPubMedCentralGoogle Scholar
  80. Lowe X et al (2001) Frequency of XY sperm increases with age in fathers of boys with Klinefelter syndrome. Am J Hum Genet 69(5):1046–1054PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lu C et al (2009) The b2/b3 subdeletion shows higher risk of spermatogenic failure and higher frequency of complete AZFc deletion than the gr/gr subdeletion in a Chinese population. Hum Mol Genet 18(6):1122–1130. Scholar
  82. Lu C et al (2014) Gene copy number alterations in the azoospermia-associated AZFc region and their effect on spermatogenic impairment. Mol Hum Reprod 20(9):836–843PubMedCrossRefGoogle Scholar
  83. Luddi A et al (2009) Spermatogenesis in a man with complete deletion of USP9Y. N Engl J Med 360(9):881–885PubMedCrossRefGoogle Scholar
  84. Luetjens CM et al (2002) Sperm aneuploidy rates in younger and older men. Hum Reprod 17(7):1826–1832PubMedCrossRefGoogle Scholar
  85. Maher GJ, Goriely A, Wilkie AOM (2014) Cellular evidence for selfish spermatogonial selection in aged human testes. Andrology 2(3):304–314PubMedCrossRefGoogle Scholar
  86. Maher GJ et al (2016a) Cellular correlates of selfish spermatogonial selection. Andrology 4(3):550–553PubMedPubMedCentralCrossRefGoogle Scholar
  87. Maher GJ et al (2016b) Visualizing the origins of selfish de novo mutations in individual seminiferous tubules of human testes. Proc Natl Acad Sci U S A 113(9):2454–2459PubMedPubMedCentralCrossRefGoogle Scholar
  88. Maher GJ et al (2018) Selfish mutations dysregulating RAS-MAPK signaling are pervasive in aged human testes. Genome Res 28:1779PubMedPubMedCentralCrossRefGoogle Scholar
  89. Makova KD, Li W-H (2002) Strong male-driven evolution of DNA sequences in humans and apes. Nature 416(6881):624–626PubMedCrossRefGoogle Scholar
  90. Malaspina D et al (2001) Advancing paternal age and the risk of schizophrenia. Arch Gen Psychiatry 58(4):361–367PubMedCrossRefGoogle Scholar
  91. Malaspina D et al (2002) Paternal age and sporadic schizophrenia: evidence for de novo mutations. Am J Med Genet 114(3):299–303PubMedPubMedCentralCrossRefGoogle Scholar
  92. Martin RH, Rademaker AW (1987) The effect of age on the frequency of sperm chromosomal abnormalities in normal men. Am J Hum Genet 41(3):484–492PubMedPubMedCentralGoogle Scholar
  93. Martin RH et al (1995) The relationship between paternal age, sex ratios, and aneuploidy frequencies in human sperm, as assessed by multicolor FISH. Am J Hum Genet 57(6):1395–1399PubMedPubMedCentralGoogle Scholar
  94. McElreavey K, Krausz C (1999) Sex chromosome genetics ’99. Male infertility and the Y chromosome. Am J Hum Genet 64(4):928–933PubMedPubMedCentralCrossRefGoogle Scholar
  95. McInnes B et al (1998) Abnormalities for chromosomes 13 and 21 detected in spermatozoa from infertile men. Hum Reprod 13(1O):2787–2790PubMedCrossRefGoogle Scholar
  96. Michaelson JJ et al (2012) Whole-genome sequencing in autism identifies hot spots for de novo germline mutation. Cell 151(7):1431–1442PubMedPubMedCentralCrossRefGoogle Scholar
  97. Morin SJ et al (2017) Translocations, inversions and other chromosome rearrangements. Fertil Steril 107(1):19–26PubMedCrossRefGoogle Scholar
  98. Morris JK et al (2008) Is the prevalence of Klinefelter syndrome increasing? Eur J Hum Genet 16(2):163–170PubMedCrossRefGoogle Scholar
  99. Navarro-Costa P, Gonçalves J, Plancha CE (2010) The AZFc region of the Y chromosome: at the crossroads between genetic diversity and male infertility. Hum Reprod Update 16(5):525–542PubMedPubMedCentralCrossRefGoogle Scholar
  100. Noordam MJ et al (2011) Gene copy number reduction in the azoospermia factor c (AZFc) region and its effect on total motile sperm count. Hum Mol Genet 20(12):2457–2463PubMedCrossRefGoogle Scholar
  101. O’Roak BJ et al (2011) Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nat Genet 43(6):585–589PubMedPubMedCentralCrossRefGoogle Scholar
  102. Ohye T et al (2010) Paternal origin of the de novo constitutional t(11;22)(q23;q11). Eur J Hum Genet 18(7):783–787PubMedPubMedCentralCrossRefGoogle Scholar
  103. Olson SB, Magenis RE (1988) Preferential paternal origin of de novo structural chromosome rearrangments. In: Daniels A (ed) Progress and topics in cytogenetics. The cytogenetics of mammalian autosomal rearrangements, vol 8. Liss, New York. pp 585–599Google Scholar
  104. Paul C, Robaire B (2013) Ageing of the male germ line. Nat Rev Urol 10(4):227–234PubMedCrossRefGoogle Scholar
  105. Penrose LS (1955) Parental age and mutation. Lancet (London, England) 269(6885):312–313CrossRefGoogle Scholar
  106. Pinto D et al (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466(7304):368–372PubMedPubMedCentralCrossRefGoogle Scholar
  107. Plotton I et al (2010) Transmissible microdeletion of the Y-chromosome encompassing two DAZ copies, four RBMY1 copies, and both PRY copies. Fertil Steril 94(7):2770.e11–2770.e16CrossRefGoogle Scholar
  108. Qin J et al (2007) The molecular anatomy of spontaneous germline mutations in human testes. PLoS Biol. Crow J (ed) 5(9):e224PubMedPubMedCentralCrossRefGoogle Scholar
  109. Rahbari R et al (2016) Timing, rates and spectra of human germline mutation. Nat Genet 48(2):126–133PubMedPubMedCentralCrossRefGoogle Scholar
  110. Rajpert-De Meyts E (2007) Recent advances and future directions in research on testicular germ cell cancer. Int J Androl 30(4):192–197PubMedCrossRefGoogle Scholar
  111. Rannan-Eliya SV et al (2004) Paternal origin of FGFR3 mutations in Muenke-type craniosynostosis. Hum Genet 115(3):200–207PubMedCrossRefPubMedCentralGoogle Scholar
  112. Rauch A et al (2012) Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet (London, England) 380(9854):1674–1682CrossRefGoogle Scholar
  113. Raue F, Frank-Raue K (2010) Update multiple endocrine neoplasia type 2. Fam Cancer 9(3):449–457PubMedCrossRefPubMedCentralGoogle Scholar
  114. Repping S et al (2002) Recombination between palindromes P5 and P1 on the human Y chromosome causes massive deletions and spermatogenic failure. Am J Hum Genet 71(4):906–922PubMedPubMedCentralCrossRefGoogle Scholar
  115. Repping S et al (2003) Polymorphism for a 1.6-Mb deletion of the human Y chromosome persists through balance between recurrent mutation and haploid selection. Nat Genet 35(3):247–251PubMedCrossRefPubMedCentralGoogle Scholar
  116. Repping S et al (2006) High mutation rates have driven extensive structural polymorphism among human Y chromosomes. Nat Genet 38(4):463–467PubMedCrossRefPubMedCentralGoogle Scholar
  117. Risch N et al (1987) Spontaneous mutation and parental age in humans. Am J Hum Genet 41(2):218–248PubMedPubMedCentralGoogle Scholar
  118. Roach JC et al (2010) Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328(5978):636–639PubMedPubMedCentralCrossRefGoogle Scholar
  119. Robbins WA et al (1997) Use of fluorescence in situ hybridization (FISH) to assess effects of smoking, caffeine, and alcohol on aneuploidy load in sperm of healthy men. Environ Mol Mutagen 30(2):175–183PubMedCrossRefGoogle Scholar
  120. Rolf C et al (2002) Natural transmission of a partial AZFb deletion of the Y chromosome over three generations: case report. Hum Reprod 17(9):2267–2271PubMedCrossRefPubMedCentralGoogle Scholar
  121. Rousseau F et al (1994) Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371(6494):252–254. Scholar
  122. Rousseaux S et al (1998) Disomy rates for chromosomes 14 and 21 studied by fluorescent in-situ hybridization in spermatozoa from three men over 60 years of age. Mol Hum Reprod 4(7):695–699PubMedCrossRefGoogle Scholar
  123. Rozen SG et al (2012) AZFc deletions and spermatogenic failure: a population-based survey of 20,000 Y chromosomes. Am J Hum Genet 91(5):890–896. Scholar
  124. Rubes J et al (1998) Smoking cigarettes is associated with increased sperm disomy in teenage men. Fertil Steril 70(4):715–723PubMedCrossRefGoogle Scholar
  125. Samuels IS, Saitta SC, Landreth GE (2009) MAP’ing CNS development and cognition: an ERKsome process. Neuron 61(2):160–167PubMedPubMedCentralCrossRefGoogle Scholar
  126. Sartorelli EM, Mazzucatto LF, de Pina-Neto JM (2001) Effect of paternal age on human sperm chromosomes. Fertil Steril 76(6):1119–1123PubMedCrossRefGoogle Scholar
  127. Shankar RK, Backeljauw PF (2018) Current best practice in the management of Turner syndrome. Ther Adv Endocrinol Metab. SAGE Publications 9(1):33PubMedCrossRefGoogle Scholar
  128. Shendure J, Akey JM (2015) The origins, determinants, and consequences of human mutations. Science (New York, NY) 349(6255):1478–1483CrossRefGoogle Scholar
  129. Shinde DN et al (2013) New evidence for positive selection helps explain the paternal age effect observed in achondroplasia. Hum Mol Genet 22(20):4117–4126PubMedPubMedCentralCrossRefGoogle Scholar
  130. Sin H-S et al (2010) Features of constitutive gr/gr deletion in a Japanese population. Hum Reprod 25(9):2396–2403PubMedCrossRefGoogle Scholar
  131. Sloter E et al (2004) Effects of male age on the frequencies of germinal and heritable chromosomal abnormalities in humans and rodents. Fertil Steril 81(4):925–943PubMedCrossRefGoogle Scholar
  132. Sloter ED et al (2007) Frequency of human sperm carrying structural aberrations of chromosome 1 increases with advancing age. Fertil Steril 87(5):1077–1086PubMedCrossRefPubMedCentralGoogle Scholar
  133. Soares AR et al (2012) AZFb microdeletions and oligozoospermia--which mechanisms? Fertil Steril 97(4):858–863PubMedCrossRefPubMedCentralGoogle Scholar
  134. Stouffs K et al (2011) What about gr/gr deletions and male infertility? Systematic review and meta-analysis. Hum Reprod Update 17(2):197–209PubMedCrossRefPubMedCentralGoogle Scholar
  135. Stouffs K et al (2017) Are AZFb deletions always incompatible with sperm production? Andrology 5(4):691–694PubMedCrossRefPubMedCentralGoogle Scholar
  136. Sun C et al (2000) Deletion of azoospermia factor a (AZFa) region of human Y chromosome caused by recombination between HERV15 proviruses. Hum Mol Genet 9(15):2291–2296PubMedCrossRefPubMedCentralGoogle Scholar
  137. Tartaglia M, Zampino G, Gelb BD (2010) Noonan syndrome: clinical aspects and molecular pathogenesis. Mol Syndromol 1(1):2–26PubMedPubMedCentralCrossRefGoogle Scholar
  138. Taylor J et al (2006) Strong and weak male mutation bias at different sites in the primate genomes: insights from the human-chimpanzee comparison. Mol Biol Evol 23(3):565–573PubMedCrossRefGoogle Scholar
  139. Templado C et al (2011) Advanced age increases chromosome structural abnormalities in human spermatozoa. Eur J Hum Genet 19(2):145–151PubMedCrossRefPubMedCentralGoogle Scholar
  140. Thomas NS et al (2006) Parental and chromosomal origin of unbalanced de novo structural chromosome abnormalities in man. Hum Genet 119(4):444–450PubMedCrossRefPubMedCentralGoogle Scholar
  141. Thomas NS et al (2010) De novo apparently balanced translocations in man are predominantly paternal in origin and associated with a significant increase in paternal age. J Med Genet 47(2):112–115PubMedCrossRefGoogle Scholar
  142. Tiemann-Boege I et al (2002) The observed human sperm mutation frequency cannot explain the achondroplasia paternal age effect. Proc Natl Acad Sci U S A 99(23):14952–14957PubMedPubMedCentralCrossRefGoogle Scholar
  143. Tsuchiya KJ et al (2008) Paternal age at birth and high-functioning autistic-spectrum disorder in offspring. Br J Psychiatry 193(4):316–321PubMedCrossRefPubMedCentralGoogle Scholar
  144. Turner DJ et al (2008) Germline rates of de novo meiotic deletions and duplications causing several genomic disorders. Nat Genet 40(1):90–95PubMedCrossRefPubMedCentralGoogle Scholar
  145. Tüttelmann F et al (2007) Gene polymorphisms and male infertility--a meta-analysis and literature review. Reprod Biomed Online 15(6):643–658PubMedCrossRefPubMedCentralGoogle Scholar
  146. Tyler-Smith C, Krausz C (2009) The will-o’-the-wisp of genetics — hunting for the azoospermia factor gene. N Engl J Med 360(9):925–927PubMedPubMedCentralCrossRefGoogle Scholar
  147. Vajo Z, Francomano CA, Wilkin DJ (2000) The molecular and genetic basis of fibroblast growth factor receptor 3 disorders: the achondroplasia family of skeletal dysplasias, Muenke craniosynostosis, and Crouzon syndrome with acanthosis nigricans. Endocr Rev 21(1):23–39PubMedPubMedCentralGoogle Scholar
  148. Vijesh VV et al (2015) Screening for AZFc partial deletions in Dravidian men with nonobstructive azoospermia and oligozoospermia. Genet Test Mol Biomarkers 19(3):150–155PubMedPubMedCentralCrossRefGoogle Scholar
  149. Visser L et al (2009) Y chromosome gr/gr deletions are a risk factor for low semen quality. Hum Reprod 24(10):2667–2673PubMedCrossRefPubMedCentralGoogle Scholar
  150. Vissers LELM et al (2010) A de novo paradigm for mental retardation. Nat Genet 42(12):1109–1112PubMedCrossRefPubMedCentralGoogle Scholar
  151. Wapner RJ et al (2012) Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med 367(23):2175–2184PubMedPubMedCentralCrossRefGoogle Scholar
  152. Weckselblatt B, Hermetz KE, Rudd MK (2015) Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis. Genome Res 25(7):937–947PubMedPubMedCentralCrossRefGoogle Scholar
  153. Wilkie AOM et al (1995) Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat Genet 9(2):165–172PubMedCrossRefPubMedCentralGoogle Scholar
  154. Wilson Sayres MA, Makova KD (2011) Genome analyses substantiate male mutation bias in many species. Bioessays 33(12):938–945PubMedCrossRefGoogle Scholar
  155. Wu B et al (2007) A frequent Y chromosome b2/b3 subdeletion shows strong association with male infertility in Han-Chinese population. Hum Reprod 22(4):1107–1113PubMedCrossRefGoogle Scholar
  156. Yanagimachi R, Yanagimachi H, Rogers BJ (1976) The use of zona-free animal ova as a test-system for the assessment of the fertilizing capacity of human spermatozoa. Biol Reprod 15(4):471–476PubMedCrossRefPubMedCentralGoogle Scholar
  157. Yang Y et al (2010) Differential effect of specific gr/gr deletion subtypes on spermatogenesis in the Chinese Han population. Int J Androl 33(5):745–754PubMedCrossRefGoogle Scholar
  158. Yang B et al (2015) Common AZFc structure may possess the optimal spermatogenesis efficiency relative to the rearranged structures mediated by non-allele homologous recombination. Sci Rep 5(1):10551PubMedPubMedCentralCrossRefGoogle Scholar
  159. Ye J et al (2013) Partial AZFc duplications not deletions are associated with male infertility in the Yi population of Yunnan Province, China. J Zhejiang Univ Sci B 14(9):807–815PubMedPubMedCentralCrossRefGoogle Scholar
  160. Yoon S-R et al (2009) The ups and downs of mutation frequencies during aging can account for the Apert syndrome paternal age effect. PLoS Genet.. Walsh B (ed) 5(7):e1000558PubMedPubMedCentralCrossRefGoogle Scholar
  161. Yoon S-R et al (2013) Age-dependent germline mosaicism of the most common noonan syndrome mutation shows the signature of germline selection. Am J Hum Genet 92(6):917–926PubMedPubMedCentralCrossRefGoogle Scholar
  162. Zhang Y-S et al (2017) Complete azoospermia factor b deletion of Y chromosome in an infertile male with severe Oligoasthenozoospermia: case report and literature review. Urology 102:111–115PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francesca Cioppi
    • 1
  • Elena Casamonti
    • 1
  • Csilla Krausz
    • 1
    Email author
  1. 1.Department of Biomedical, Experimental and Clinical Sciences “Mario Serio”University of FlorenceFlorenceItaly

Personalised recommendations