Advertisement

Effect on Sperm DNA Quality Following Sperm Selection for ART: New Insights

  • Nicoletta Tarozzi
  • Marco Nadalini
  • Andrea BoriniEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1166)

Abstract

In the female reproductive tract, male gametes undergo a natural sperm selection process in order to discriminate spermatozoa on the basis of their quality to maximize the chances of successful reproduction. With the introduction of assisted reproductive technology (ART), scientists and clinicians developed diverse sperm selection strategies focusing on the isolation of competent spermatozoa. With increasing understanding of sperm functions and fertilization mechanism and evolution of available technologies, the initial simple sperm preparation protocols were complemented, and sometimes replaced, by new sperm-sorting techniques. In particular, while in the early years the focus was on obtaining motile spermatozoa, in later years, especially after the introduction of intracytoplasmic sperm injection (ICSI), the focus shifted to the isolation of functional and “healthy” spermatozoa, considering some other important factors, such as sperm DNA integrity. Sperm DNA damage, as well as chromatin structure alterations, in fact, is related to decreased reproductive ability of men, in natural as well as in assisted reproduction.

Keywords

Sperm DNA quality Sperm selection ART outcome 

References

  1. Ahmad L, Jalali S, Shami SA et al (2007) Sperm preparation: DNA damage by comet assay in normo- and teratozoospermics. Arch Androl 53(6):325–338PubMedCrossRefPubMedCentralGoogle Scholar
  2. Ainsworth C, Nixon B, Aitken RJ (2005) Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum Reprod 20:2261–2270PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ainsworth C, Nixon B, Jansen RP et al (2007) First recorded pregnancy and normal birth after ICSI using electrophoretically isolated spermatozoa. Hum Reprod 22:197–200PubMedCrossRefPubMedCentralGoogle Scholar
  4. Ainsworth CJ, Nixon B, Aitken RJ (2011) The electrophoretic separation of spermatozoa: an analysis of genotype, surface carbohydrate composition and potential for capacitation. Int J Androl 34(5):e422–e434PubMedCrossRefPubMedCentralGoogle Scholar
  5. Aitken RJ, Hanson AR, Kuczera L (2011) Electrophoretic sperm isolation: optimization of electrophoresis conditions and impact on oxidative stress. Hum Reprod 26:1955–1964PubMedCrossRefPubMedCentralGoogle Scholar
  6. Aitken RJ, Bronson R, Smith T et al (2013) The source and significance of DNA damage in human spermatozoa; a commentary on diagnostic strategies and straw man fallacies. Mol Hum Reprod 19(8):475–485PubMedCrossRefPubMedCentralGoogle Scholar
  7. Aitken RJ, Finnie JM, Muscio L et al (2014) Potential importance of transition metals in the induction of DNA damage by sperm preparation media. Hum Reprod 29(10):2136–2147PubMedCrossRefPubMedCentralGoogle Scholar
  8. Amiri I, Ghorbani M, Heshmati S (2012) Comparison of the DNA fragmentation and the sperm parameters after processing by the density gradient and the swim up methods. J Clin Diagn Res 6:1451–1453PubMedPubMedCentralGoogle Scholar
  9. Antinori M, Licata E, Dani G et al (2008) Intracytoplasmic morphologically selected sperm injection: a prospective randomized trial. Reprod Biomed Online 16:835–841PubMedCrossRefPubMedCentralGoogle Scholar
  10. Avalos-Durán G, Cañedo-Del Ángel AME, Rivero-Murillo J et al (2018) Physiological ICSI (PICSI) vs conventional ICSI in couples with male factor: a systematic review. JBRA Assist Reprod 22(2):139–147PubMedPubMedCentralGoogle Scholar
  11. Avendano C, Franchi A, Taylor S et al (2009) Fragmentation of DNA in morphologically normal human spermatozoa. Fertil Steril 91:1077–1084PubMedCrossRefPubMedCentralGoogle Scholar
  12. Baccetti B (2004) Microscopical advances in assisted reproduction. J Submicrosc Cytol Pathol 36(3–4):333–339PubMedPubMedCentralGoogle Scholar
  13. Barroso G, Morshedi M, Oehninger S (2000) Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa. Hum Reprod 15:1338–1344PubMedCrossRefGoogle Scholar
  14. Bartoov B, Eltes F, Pansky M et al (1994) Improved diagnosis of male fertility potential via a combination of quantitative ultramorphology and routine semen analyses. Hum Reprod 9(11):2069–2075PubMedCrossRefPubMedCentralGoogle Scholar
  15. Bartoov B, Berkovitz A, Eltes F (2001) Selection of spermatozoa with normal nuclei to improve the pregnancy rate with intracytoplasmic sperm injection. N Engl J Med 345:1067–1068CrossRefGoogle Scholar
  16. Bartoov B, Berkovitz A, Eltes F et al (2002) Real-time fine morphology of motile human sperm cells is associated with IVF-ICSI outcome. J Androl 23(1):1–8PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bartoov B, Berkovitz A, Eltes F et al (2003) Pregnancy rates are higher with intracytoplasmic morphologically selected sperm injection than with conventional intracytoplasmic injection. Fertil Steril 80(6):1413–1419Google Scholar
  18. Berkovitz A, Eltes F, Yaari S et al (2005) The morphological normalcy of the sperm nucleus and pregnancy rate of intracytoplasmic injection with morphologically selected sperm. Hum Reprod 20(1):185–190PubMedCrossRefPubMedCentralGoogle Scholar
  19. Berkovitz A, Eltes F, Ellenbogen A et al (2006) Does the presence of nuclear vacuoles in human sperm selected for ICSI affect pregnancy outcome? Hum Reprod 21:1787–1790PubMedCrossRefPubMedCentralGoogle Scholar
  20. Berteli TS, Da Broi MG, Martins WP et al (2017) Magnetic-activated cell sorting before density gradient centrifugation improves recovery of high-quality spermatozoa. Andrology 5(4):776–782PubMedCrossRefPubMedCentralGoogle Scholar
  21. Borini A, Tarozzi N, Bizzaro D et al (2006) Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod 21(11):2876–2881PubMedCrossRefPubMedCentralGoogle Scholar
  22. Borini A, Tarozzi N, Nadalini M (2017) Sperm DNA fragmentation testing in male infertility work-up: are we ready? Transl Androl Urol 6(Suppl 4):S580–S582PubMedPubMedCentralCrossRefGoogle Scholar
  23. Bucar S, Gonçalves A, Rocha E et al (2015) DNA fragmentation in human sperm after magnetic-activated cell sorting. J Assist Reprod Genetics 32(1):147–154Google Scholar
  24. Cakar Z, Cetinkaya B, Aras D et al (2016) Does combining magnetic-activated cell sorting with density gradient or swim-up improve sperm selection? J Assist Reprod Genet 33:1059–1065PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cassuto NG, Bouret D, Plouchart JM et al (2009) A new real-time morphology classification for human spermatozoa: a link for fertilization and improved embryo quality. Fertil Steril 92:1616–1625PubMedCrossRefPubMedCentralGoogle Scholar
  26. Cassuto NG, Hazout A, Hammoud I et al (2012) Correlation between DNA defect and sperm-head morphology. Reprod Biomed Online 24:211–218PubMedCrossRefPubMedCentralGoogle Scholar
  27. Cassuto NG, Hazout A, Bouret D et al (2014) Low birth defects by deselecting abnormal spermatozoa before ICSI. Reprod Biomed Online 28:47–53PubMedCrossRefPubMedCentralGoogle Scholar
  28. Cayli S, Jakab A, Ovari L et al (2003) Biochemical markers of sperm function: male fertility and sperm selection for ICSI. Reprod Biomed Online 7(4):462–468PubMedCrossRefPubMedCentralGoogle Scholar
  29. Cayli S, Sakkas D, Vigue L et al (2004) Cellular maturity and apoptosis in human sperm: creatine kinase, caspase-3 and Bcl-XL levels in mature and diminished maturity sperm. Mol Hum Reprod 10(5):365–372PubMedCrossRefPubMedCentralGoogle Scholar
  30. Chan PJ, Jacobson JD, Corselli JU et al (2006) A simple zeta method for sperm selection based on membrane charge. Fertil Steril 85:481–486PubMedCrossRefPubMedCentralGoogle Scholar
  31. Chi HJ, Kwak SJ, Kim SG et al (2016) Efficient isolation of sperm with high DNA integrity and stable chromatin packaging by a combination of density-gradient centrifugation and magnetic-activated cell sorting. Clin Exp Reprod Med 43(4):199–206PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cho BS, Schuster TG, Zhu X et al (2003) Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem 75:1671–1675PubMedCrossRefPubMedCentralGoogle Scholar
  33. Crippa A, Magli M, Paviglianiti B et al (2009) DNA fragmentation and characteristics of birefringence in human sperm head. Hum Reprod 24:i95Google Scholar
  34. De Martin H, Cocuzza MS, Tiseo BC et al (2017) Positive rheotaxis extended drop: a one-step procedure to select and recover sperm with mature chromatin for intracytoplasmic sperm injection. J Assist Reprod Genet 34(12):1699–1708PubMedPubMedCentralCrossRefGoogle Scholar
  35. De Vos A, Van de Velde H, Bocken G et al (2013) Does intracytoplasmic morphologically selected sperm injection improve embryo development? A randomized sibling-oocyte study. Hum Reprod 28(3):617–626Google Scholar
  36. Di Santo M, Tarozzi N, Nadalini M et al (2012) Human sperm cryopreservation: update on techniques, effect on DNA integrity and implications for ART. Adv Urol 2012:854837PubMedPubMedCentralCrossRefGoogle Scholar
  37. Donnelly ET, O’Connell M, McClure N et al (2000) Differences in nuclear DNA fragmentation and mitochondrial integrity of semen and prepared human spermatozoa. Hum Reprod 15:1552–1561PubMedCrossRefPubMedCentralGoogle Scholar
  38. Eliasson R (2010) Semen analysis with regard to sperm number, sperm morphology and functional aspects. Asian J Androl 12:26–32PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ellis DI, Cowcher DP, Ashton L et al (2013) Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool. Analyst 138(14):3871–3884PubMedCrossRefPubMedCentralGoogle Scholar
  40. Enciso M, Iglesias M, Galán I et al (2011) The ability of sperm selection techniques to remove single- or double-strand DNA damage. Asian J Androl 13(5):764–768PubMedPubMedCentralCrossRefGoogle Scholar
  41. Enciso M, Pieczenik G, Cohen J et al (2012) Development of a novel synthetic oligopeptide for the detection of DNA damage in human spermatozoa. Hum Reprod 27:2254–2266PubMedCrossRefGoogle Scholar
  42. Erberelli RF, Salgado RM, Pereira DH et al (2017) Hyalurinan-binding system for sperm selection enhances pregnancy rates in ICSI cycles associated with male factor infertility. JBRA Assist Reprod 21(1):2–6Google Scholar
  43. Figueira RC, Setti AS, Braga DP et al (2011) Prognostic value of triploid zygotes on intracytoplasmic sperm injection outcomes. J Assist Reprod Genet 28(10):879–883PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fleming SD, Ilad RS, Griffin AM et al (2008) Prospective controlled trial of an electrophoretic method of sperm preparation for assisted reproduction: comparison with density gradient centrifugation. Hum Reprod 23:2646–2651PubMedCrossRefPubMedCentralGoogle Scholar
  45. Garolla A, Fortini D, Menegazzo M et al (2008) High-power microscopy for selecting spermatozoa for ICSI by physiological status. Reprod Biomed Online 17:610–616PubMedCrossRefPubMedCentralGoogle Scholar
  46. Garolla A, Cosci I, Menegazzo M et al (2014) Sperm selected by both birefringence and motile sperm organelle morphology examination have reduced deoxyribonucleic acid fragmentation. Fertil Steril 101(3):647–652PubMedCrossRefPubMedCentralGoogle Scholar
  47. Ghaleno LR, Valojerdi MR, Janzamin E et al (2014) Evaluation of conventional semen parameters, intracellular reactive oxygen species, DNA fragmentation and dysfunction of mitochondrial membrane potential after semen preparation techniques: a flow cytometric study. Arch Gynecol Obstet 289:173–180PubMedCrossRefPubMedCentralGoogle Scholar
  48. Gianaroli L, Magli MC, Collodel G et al (2008) Sperm head’s birefringence: a new criterion for sperm selection. Fertil Steril 90(1):104–112Google Scholar
  49. Gianaroli L, Magli MC, Ferraretti AP et al (2010) Birefringence characteristics in sperm heads allow for the selection of reacted spermatozoa for intracytoplasmic sperm injection. Fertil Steril 93:807–813PubMedCrossRefPubMedCentralGoogle Scholar
  50. Gil M, Sar-Shalom V, Sivira YM et al (2013) Sperm selection using magnetic activated cell sorting (MACS) in assisted reproduction: a systematic review and meta-analysis. J Assist Reprod Genet 30:479–485PubMedPubMedCentralCrossRefGoogle Scholar
  51. Giuliani V, Pandolfi C, Santucci R et al (2004) Expression of gp20, a human sperm antigen of epididymal origin, is reduced in spermatozoa from subfertile men. Mol Reprod Dev 69:235–240PubMedCrossRefPubMedCentralGoogle Scholar
  52. Grunewald S, Paasch U, Glander HJ (2001) Enrichment of non-apoptotic human spermatozoa after cryopreservation by immunomagnetic cell sorting. Cell Tissue Bank 2:127–133PubMedCrossRefPubMedCentralGoogle Scholar
  53. Grunewald S, Reinhardt M, Blumenauer V et al (2009) Increased sperm chromatin decondensation in selected non-apoptotic spermatozoa of patients with male infertility. Fertil Steril 92:572–577PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hammadeh ME, Zavos PM, Rosenbaum P et al (2001) Comparison between the quality and function of sperm after semen processing with two different methods. Asian J Androl 3(2):125–130PubMedPubMedCentralGoogle Scholar
  55. Hammoud I, Boitrelle F, Ferfouri F et al (2013) Selection of normal spermatozoa with a vacuole-free head (×6300) improves selection of spermatozoa with intact DNA in patients with high sperm DNA fragmentation rates. Andrologia 45(3):163–170Google Scholar
  56. Hazout A, Dumont-Hassan M, Junca AM et al (2006) High-magnification ICSI overcomes paternal effect resistant to conventional ICSI. Reprod Biomed Online 12:19–25PubMedCrossRefPubMedCentralGoogle Scholar
  57. Henkel RR (2012) Sperm preparation: state-of-the-art—physiological aspects and application of advanced sperm preparation methods. Asian J Androl 14:260PubMedCrossRefPubMedCentralGoogle Scholar
  58. Henkel RR, Schill WB (2003) Sperm preparation for ART. Reprod Biol Endocrinol 1:108–130PubMedPubMedCentralCrossRefGoogle Scholar
  59. Huser T, Orme CA, Hollars CW et al (2009) Raman spectroscopy of DNA packaging in individual human sperm cells distinguishes normal from abnormal cells. J Biophotonics 2:322–332PubMedCrossRefPubMedCentralGoogle Scholar
  60. Huszar G (2012) Sperm testing and ICSI selection by hyaluronic acid binding: the hyaluronic acid-coated glass slide and petri dish in the andrology and IVF laboratories. In: Nagy ZP, Varghese AC, Agarwal A (eds) Practical manual of in vitro fertilization. Springer, New York, pp 241–257CrossRefGoogle Scholar
  61. Huszar G, Ozkavukcu S, Jakab A et al (2006) Hyaluronic acid binding ability of human sperm reflects cellular maturity and fertilizing potential: selection of sperm for intracytoplasmic sperm injection. Curr Opin Obstet Gynecol 18:260–267PubMedCrossRefPubMedCentralGoogle Scholar
  62. Huszar G, Jakab A, Sakkas D et al (2007) Fertility testing and ICSI sperm selection by hyaluronic acid binding: clinical and genetic aspects. Reprod Biomed Online 14:650–663PubMedCrossRefPubMedCentralGoogle Scholar
  63. Jakab A, Sakkas D, Delpiano E et al (2005) Intracytoplasmic sperm injection: a novel selection method for sperm with normal frequency of chromosomal aneuploidies. Fertil Steril 84:1665–1673PubMedCrossRefPubMedCentralGoogle Scholar
  64. Jayaraman V, Upadhya D, Narayan PK et al (2012) Sperm processing by swim-up and density gradient is effective in elimination of sperm with DNA damage. J Assist Reprod Genet 29:557–563PubMedPubMedCentralCrossRefGoogle Scholar
  65. Kam TL, Jacobson JD, Patton WC et al (2007) Retention of membrane charge attributes by cryopreserved-thawed sperm and zeta selection. J Assist Reprod Genet 24:429–434PubMedPubMedCentralCrossRefGoogle Scholar
  66. Khajavi NA, Razavi S, Mardani M et al (2009) Can Zeta sperm selection method, recover sperm with higher DNA integrity compare to density gradient centrifugation? Iranian J Reprod Med 7(2):73–77Google Scholar
  67. Kheirollahi-Kouhestani M, Razavi S, Tavalaee M et al (2009) Selection of sperm based on combined density gradient and Zeta method may improve ICSI outcome. Hum Reprod 24:2409–2416PubMedCrossRefPubMedCentralGoogle Scholar
  68. Kim SW, Jee BC, Kim SK et al (2017) Sperm DNA fragmentation and sex chromosome aneuploidy after swim-up versus density gradient centrifugation. Clin Exp Reprod Med 44(4):201–206PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kirchhoff C, Schröter S (2001) New insights into the origin, structure and role of CD52: a major component of the mammalian sperm glycocalyx. Cells Tissues Organs 168:93–104PubMedCrossRefPubMedCentralGoogle Scholar
  70. Komiya A, Watanabe A, Kawauchi Y et al (2013) Sperm with large nuclear vacuoles and semen quality in the evaluation of male infertility. Syst Biol Reprod Med 59:13–20PubMedCrossRefPubMedCentralGoogle Scholar
  71. Lee TH, Liu CH, Shih YT et al (2010) Magnetic-activated cell sorting for sperm preparation reduces spermatozoa with apoptotic markers and improves the acrosome reaction in couples with unexplained infertility. Hum Reprod 25(4):839–846CrossRefGoogle Scholar
  72. Liu F, Zhu Y, Liu Y et al (2013) Real-time Raman microspectroscopy scanning of the single live sperm bound to human zona pellucida. Fertil Steril 99:684–689PubMedCrossRefPubMedCentralGoogle Scholar
  73. Lo MG, Murisier F, Piva I et al (2013) Focus on intracytoplasmic morphologically selected sperm injection (IMSI): a mini-review. Asian J Androl 15:608–615CrossRefGoogle Scholar
  74. Magli MC, Crippa A, Muzii L et al (2012) Head birefringence properties are associated with acrosome reaction, sperm motility and morphology. Reprod Biomed Online 24(3):352–359PubMedCrossRefPubMedCentralGoogle Scholar
  75. Majumdar G, Majumdar A (2013) A prospective randomized study to evaluate the effect of hyaluronic acid sperm selection on the intracytoplasmic sperm injection outcome of patients with unexplained infertility having normal semen parameters. J Assist Reprod Genet 30:1471–1475PubMedPubMedCentralCrossRefGoogle Scholar
  76. Mallidis C, Wistuba J, Bleisteiner B et al (2011) In situ visualization of damaged DNA in human sperm. Hum Reprod 26:1641–1649PubMedCrossRefPubMedCentralGoogle Scholar
  77. Mallidis C, Sanchez V, Wistuba J et al (2014) Raman microspectroscopy: shining a new light on reproductive medicine. Hum Reprod Update 20:403–414PubMedCrossRefPubMedCentralGoogle Scholar
  78. Manz R, Assenmacher M, Pfluger E et al (1995) Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc Natl Acad Sci U S A 92(6):1921–1925PubMedPubMedCentralCrossRefGoogle Scholar
  79. Marchesi DE, Biederman H, Ferrara S et al (2010) The effect of semen processing on sperm DNA integrity: comparison of two techniques using the novel Toluidine Blue Assay. Eur J Obstet Gynecol Reprod Biol 151(2):176–180PubMedCrossRefPubMedCentralGoogle Scholar
  80. Marchetti C, Obert G, Deffosez A et al (2002) Study of mitochondrial membrane potential, reactive oxygen species, DNA fragmentation and cell viability by flow cytometry in human sperm. Hum Reprod 17:1257–1265PubMedCrossRefGoogle Scholar
  81. Marci R, Murisier F, Lo Monte G et al (2013) Clinical outcome after IMSI procedure in an unselected infertile population: a pilot study. Reprod Health 10:16PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mauri AL, Petersen CG, Oliveira JB et al (2010) Comparison of day 2 embryo quality after conventional ICSI versus intracytoplasmic morphologically selected sperm injection (IMSI) using sibling oocytes. Eur J Obstet Gynecol Reprod Biol 150:42–46PubMedCrossRefPubMedCentralGoogle Scholar
  83. McDowell S, Kroon B, Ford E et al (2014) Advanced sperm selection techniques for assisted reproduction. Cochrane Database Syst Rev 10:CD010461Google Scholar
  84. Meister K, Schmidt DA, Bründermann E et al (2010) Confocal Raman microspectroscopy as an analytical tool to assess the mitochondrial status in human spermatozoa. Analyst 135:1370–1374PubMedCrossRefPubMedCentralGoogle Scholar
  85. Menezo Y, Junca AM, Dumont M et al (2010) “Physiologic” (hyaluronic acid-carried) ICSI results in the same embryo quality and pregnancy rates as with the use of potentially toxic polyvinylpyrrolidone (PVP). Fertil Steril 94(4 Suppl):S232CrossRefGoogle Scholar
  86. Merrifield B (2001) Life during a golden age of peptide chemistry — the concept and development of solid-phase peptide synthesis. Oxford University Press, Oxford, UKGoogle Scholar
  87. Miltenyi S, Muller W, Weichel W et al (1990) High gradient magnetic cell separation with MACS. Cytometry 11:231–238PubMedCrossRefPubMedCentralGoogle Scholar
  88. Molday RS, Yen SP, Rembaum A (1977) Application of magnetic microspheres in labelling and separation of cells. Nature 268:437–438PubMedCrossRefPubMedCentralGoogle Scholar
  89. Muratori M, Tarozzi N, Cambi M et al (2016) Variation of DNA fragmentation levels during density gradient sperm selection for assisted reproduction techniques: a possible new male predictive parameter of pregnancy? Medicine (Baltimore) 95(20):e3624CrossRefGoogle Scholar
  90. Nadalini M, Tarozzi N, Distratis V et al (2009) Impact of intracytoplasmic morphologically selected sperm injection on assisted reproduction outcome a review. Reprod Biomed Online 19(l3):45–55PubMedCrossRefPubMedCentralGoogle Scholar
  91. Nadalini M, Tarozzi N, Di Santo M et al (2014) Annexin V magnetic-activated cell sorting versus swim-up for the selection of human sperm in ART: is the new approach better than the traditional one? J Assist Reprod Genet 31(8):1045–1051PubMedPubMedCentralCrossRefGoogle Scholar
  92. Nasr-Esfahani MH, Razavi S, Vahdati AA et al (2008) Evaluation of sperm selection procedure based on hyaluronic acid binding ability on ICSI outcome. J Assist Reprod Genet 25:197–203PubMedPubMedCentralCrossRefGoogle Scholar
  93. Nasr-Esfahani MH, Deemeh M, Tavalaee M (2012) New era in sperm selection for ICSI. Int J Androl 35:475–484PubMedCrossRefPubMedCentralGoogle Scholar
  94. Nasr-Esfahani MH, Deemeh MR, Tavalaee M et al (2016) Zeta sperm selection improves pregnancy rate and alters sex ratio in male factor infertility patients: a double-blind, randomized clinical trial. Int J Fertil Steril 10(2):253–260PubMedPubMedCentralGoogle Scholar
  95. Nosrati R, Vollmer M, Eamer L et al (2014) Rapid selection of sperm with high DNA integrity. Lab Chip 14:1142–1150PubMedCrossRefPubMedCentralGoogle Scholar
  96. Oguz Y, Guler I, Erdem A et al (2018) The effect of swim-up and gradient sperm preparation techniques on deoxyribonucleic acid (DNA) fragmentation in subfertile patients. J Assist Reprod Genet 35(6):1083–1089PubMedPubMedCentralCrossRefGoogle Scholar
  97. Paasch U, Grunewald S, Glander HJ (2007) Sperm selection in assisted reproductive techniques. Soc Reprod Fertil Suppl 65:515–525PubMedPubMedCentralGoogle Scholar
  98. Parmegiani L, Cognigni GE, Bernardi S et al (2010a) “Physiologic ICSI”: hyaluronic acid (HA) favors selection of spermatozoa without DNA fragmentation and with normal nucleus, resulting in improvement of embryo quality. Fertil Steril 93:598–604PubMedCrossRefPubMedCentralGoogle Scholar
  99. Parmegiani L, Cognigni GE, Ciampaglia W et al (2010b) Efficiency of hyaluronic acid (HA) sperm selection. J Assist Reprod Genet 27:13–16PubMedCrossRefPubMedCentralGoogle Scholar
  100. Parmegiani L, Cognigni GE, Filicori M (2012) New advances in intracytoplasmic sperm injection (ICSI). Advances in embryo transfer. InTech, New York, pp 99–115Google Scholar
  101. Peer S, Eltes F, Berkovitz A et al (2007) Is fine morphology of the human sperm nuclei affected by in vitro incubation at 37 degrees C? Fertil Steril 88(6):1589–1594PubMedCrossRefPubMedCentralGoogle Scholar
  102. Perdrix A, Saidi R, Menard JF et al (2012) Relationship between conventional sperm parameters and motile sperm organelle morphology examination (MSOME). Int J Androl 35:491–498PubMedCrossRefPubMedCentralGoogle Scholar
  103. Petersen CG, Massaro FC, Mauri AL et al (2010) Efficacy of hyaluronic acid binding assay in selecting motile spermatozoa with normal morphology at high magnification. Reprod Biol Endocrinol 8:149PubMedPubMedCentralCrossRefGoogle Scholar
  104. Petersen CG, Vagnini L, Mauri AL et al (2011) Relationship between DNA damage and sperm head birefringence. Reprod Biomed Online 22(6):583–589PubMedCrossRefPubMedCentralGoogle Scholar
  105. Razavi SH, Nasr-Esfahani MH, Deemeh MR et al (2009) Evaluation of zeta and HA-binding methods for selection of spermatozoa with normal morphology, protamine content and DNA integrity. Andrologia 42:13–19CrossRefGoogle Scholar
  106. Said TM, Agarwal A, Zborowski M et al (2008) Utility of magnetic cell separation as a molecular sperm preparation technique. J Androl 29:134–142PubMedCrossRefPubMedCentralGoogle Scholar
  107. Sakkas D, Manicardi GC, Tomlinson M et al (2000) The use of two density gradient centrifugation techniques and the swim-up method to separate spermatozoa with chromatin and nuclear DNA anomalies. Hum Reprod 15(5):1112–1116PubMedCrossRefPubMedCentralGoogle Scholar
  108. Santiso R, Tamayo M, Gosálvez J et al (2010) Swim-up procedure selects spermatozoa with longer telomere length. Mutat Res 688:88–90PubMedCrossRefPubMedCentralGoogle Scholar
  109. Schulte RT, Chung YK, Ohl DA et al (2007) Microfluidic sperm sorting device provides a novel method for selecting motile sperm with higher DNA integrity. Fertil Steril 88:S76CrossRefGoogle Scholar
  110. Schuster TG, Cho B, Keller LM et al (2003) Isolation of motile spermatozoa from semen samples using microfluidics. Reprod Biomed Online 7:75–81PubMedCrossRefPubMedCentralGoogle Scholar
  111. Shirota K, Yotsumoto F, Itoh H et al (2016) Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil Steril 105:315–321PubMedCrossRefPubMedCentralGoogle Scholar
  112. Smith GD, Takayama S (2017) Application of microfluidic technologies to human assisted reproduction. Mol Hum Reprod 23(4):257–268PubMedPubMedCentralGoogle Scholar
  113. Souza Setti SA, Ferreira RC, Paes de Almeida Ferreira Braga D et al (2010) Intracytoplasmic sperm injection outcome versus intracytoplasmic morphologically selected sperm injection outcome: a meta-analysis. Reprod Biomed Online 21:450–455PubMedCrossRefPubMedCentralGoogle Scholar
  114. Stevanato J, Bertolla RP, Barradas V et al (2008) Semen processing by density gradient centrifugation does not improve sperm apoptotic deoxyribonucleic acid fragmentation rates. Fertil Steril 90(3):889–890PubMedCrossRefGoogle Scholar
  115. Suarez SS, Wu M (2017) Microfluidic devices for the study of sperm migration. Mol Hum Reprod 23(4):227–234PubMedPubMedCentralGoogle Scholar
  116. Swain RJ, Stevens MM (2007) Raman microspectroscopy for non-invasive biochemical analysis of single cells. Biochem Soc Trans 35:544–549PubMedCrossRefPubMedCentralGoogle Scholar
  117. Tarozzi N, Bizzaro D, Flamigni C et al (2007) Clinical relevance of sperm DNA damage in assisted reproduction. Reprod Biomed Online 14(6):746–757PubMedCrossRefGoogle Scholar
  118. Tarozzi N, Nadalini M, Bizzaro D et al (2009a) Sperm hyaluronan-binding assay: clinical value in conventional IVF under Italian law. Reprod Biomed Online 19(Suppl 3):35–43PubMedCrossRefPubMedCentralGoogle Scholar
  119. Tarozzi N, Nadalini M, Stronati A et al (2009b) Anomalies in sperm chromatin packaging: implications for assisted reproduction techniques. Reprod Biomed Online 18(4):486–495PubMedCrossRefGoogle Scholar
  120. Tavalaee M, Deemeh M, Arbabian M et al (2012) Density gradient centrifugation before or after magnetic-activated cell sorting: which technique is more useful for clinical sperm selection? J Assist Reprod Genet 29:31–38CrossRefGoogle Scholar
  121. Teixeira DM, Barbosa MA, Ferriani RA et al (2013) Regular (ICSI) versus ultra-high magnification (IMSI) sperm selection for assisted reproduction. Cochrane Database Syst Rev 7:CD010167Google Scholar
  122. Teves ME, Barbano F, Guidobaldi HA et al (2006) Progesterone at the picomolar range is a chemoattractant for mammalian spermatozoa. Fertil Steril 86(3):745–749PubMedCrossRefPubMedCentralGoogle Scholar
  123. Twigg J, Irvine DS, Houston P et al (1998) Iatrogenic DNA damage induced in human spermatozoa during sperm preparation: protective significance of seminal plasma. Mol Hum Reprod 4:439–445PubMedCrossRefPubMedCentralGoogle Scholar
  124. Van Den Bergh MJ, Fahy-Deshe M, Hohl MK (2009) Pronuclear zygote score following intracytoplasmic injection of hyaluronan-bound spermatozoa: a prospective randomized study. Reprod Biomed Online 19(6):796–801CrossRefGoogle Scholar
  125. Vanderzwalmen P, Hiemer A, Rubner P et al (2008) Blastocyst development after sperm selection at high magnification is associated with size and number of nuclear vacuoles. Reprod Biomed Online 17:617–627PubMedCrossRefPubMedCentralGoogle Scholar
  126. Vermes I, Haanen C, Steffens-Nakken H et al (2005) A novel assay for apoptosis: flow cytometric detection of phosphatidylserine expression of early apoptotic cells using fluorescein labeled Annexin V. J Immunol Methods 184(1):39–51CrossRefGoogle Scholar
  127. Vermey BG, Chapman MG, Cooke S et al (2015) The relationship between sperm head retardance using polarized light microscopy and clinical outcomes. Reprod Biomed Online 30(1):67–73PubMedCrossRefPubMedCentralGoogle Scholar
  128. Volpes A, Sammartano F, Rizzari S et al (2016) The pellet swim-up is the best technique for sperm preparation during in vitro fertilization procedures. J Assist Reprod Genet 33:765–770PubMedPubMedCentralCrossRefGoogle Scholar
  129. Worrilow KC, Huynh HT, Bower JB et al (2007) PICSI™ vs. ICSI: statistically significant improvement in clinical outcomes in 240 in vitro fertilization (IVF) patients. Fertil Steril 88(Suppl 1):S37CrossRefGoogle Scholar
  130. Worrilow KC, Eid S, Woodhouse D et al (2012) Use of hyaluronan in the selection of sperm for intracytoplasmic sperm injection (ICSI): significant improvement in clinical outcomes – multicenter, double-blinded and randomized controlled trial. Hum Reprod 28(2):306–314PubMedPubMedCentralCrossRefGoogle Scholar
  131. Xie L, Ma R, Han C et al (2010) Integration of sperm motility and chemotaxis screening with a microchannel-based device. Clin Chem 56(8):1270–1278PubMedCrossRefPubMedCentralGoogle Scholar
  132. Xue X, Wang WS, Shi JZ et al (2014) Efficacy of swim-up versus density gradient centrifugation in improving sperm deformity rate and DNA fragmentation index in semen samples from teratozoospermic patients. J Assist Reprod Genet 31(9):1161–1166PubMedPubMedCentralCrossRefGoogle Scholar
  133. Yang Q, Zhang N, Zhao F et al (2015) Processing of semen by density gradient centrifugation selects spermatozoa with longer telomeres for assisted reproduction techniques. Reprod Biomed Online 31:44–50PubMedCrossRefPubMedCentralGoogle Scholar
  134. Ye H, Huang GN, Gao Y et al (2006) Relationship between human sperm hyaluronan binding assay and fertilization rate in conventional in vitro fertilization. Hum Reprod 21:1545–1550PubMedCrossRefPubMedCentralGoogle Scholar
  135. Younglai EV, Holt D, Brown P et al (2001) Sperm swim-up techniques and DNA fragmentation. Hum Reprod 16:1950–1953PubMedCrossRefPubMedCentralGoogle Scholar
  136. Zarei-Kheirabadi M, Tavalaee M, Deemeh M et al (2012) Evaluation of ubiquitin and annexin V in sperm population selected based on density gradient centrifugation and zeta potential (DGC-Zeta). J Assist Reprod Genet 29:365–371PubMedCrossRefPubMedCentralGoogle Scholar
  137. Zhang Y, Xiao RR, Yin T et al (2015) Generation of gradients on a microfluidic device: toward a high-throughput investigation of spermatozoa chemotaxis. PLoS One 10(11):e0142555PubMedPubMedCentralCrossRefGoogle Scholar
  138. Zhao F, Yang Q, Shi S et al (2016) Semen preparation methods and sperm telomere length: density gradient centrifugation versus the swim up procedure. Sci Rep 13(6):39051CrossRefGoogle Scholar
  139. Zini A, Finelli A, Phang D et al (2000) Influence of semen processing technique on human sperm DNA integrity. Urology 56:1081–1084PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nicoletta Tarozzi
    • 1
  • Marco Nadalini
    • 1
  • Andrea Borini
    • 1
    Email author
  1. 1.9.baby Family and Fertility CenterBolognaItaly

Personalised recommendations