Genetic Factors Affecting Sperm Chromatin Structure

  • Mélina Blanco
  • Julie CocquetEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1166)


Spermatozoa genome has unique features that make it a fascinating field of investigation: first, because, with oocyte genome, it can be transmitted generation after generation; second, because of genetic shuffling during meiosis, each spermatozoon is virtually unique in terms of genetic content, with consequences for species evolution; and finally, because its chromatin organization is very different from that of somatic cells or oocytes, as it is not based on nucleosomes but on nucleoprotamines which confer a higher order of packaging. Histone-to-protamine transition involves many actors, such as regulators of spermatid gene expression, components of the nuclear envelop, histone-modifying enzymes and readers, chaperones, histone variants, transition proteins, protamines, and certainly many more to be discovered.

In this book chapter, we will present what is currently known about sperm chromatin structure and how it is established during spermiogenesis, with the aim to list the genetic factors that regulate its organization.


Spermatozoa Chromatin Protamine Nucleosome Histone Gene expression Nucleus Spermatids Spermiogenesis 



This work was supported by INSERM and ANR-17-CE12-0004-01. We apologize to those authors whose work is not cited because of space considerations or, unfortunately, because of our ignorance.


  1. Akinloye O, Gromoll J, Callies C, Nieschlag E, Simoni M (2007) Mutation analysis of the X-chromosome linked, testis-specific TAF7L gene in spermatogenic failure. Andrologia 39:190–195PubMedCrossRefPubMedCentralGoogle Scholar
  2. Aoki VW, Liu L, Jones KP, Hatasaka HH, Gibson M, Peterson CM, Carrell DT (2006) Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil Steril 86:1408–1415CrossRefGoogle Scholar
  3. Aston KI, Krausz C, Laface I, Ruiz-Castane E, Carrell DT (2010) Evaluation of 172 candidate polymorphisms for association with oligozoospermia or azoospermia in a large cohort of men of European descent. Hum Reprod 25:1383–1397PubMedCrossRefPubMedCentralGoogle Scholar
  4. Audouard C, Christians E (2011) Hsp90beta1 knockout targeted to male germline: a mouse model for globozoospermia. Fertil Steril 95:1475–7 e1–1475–7 e4CrossRefGoogle Scholar
  5. Awe S, Renkawitz-Pohl R (2010) Histone H4 acetylation is essential to proceed from a histone- to a protamine-based chromatin structure in spermatid nuclei of Drosophila melanogaster. Syst Biol Reprod Med 56:44–61PubMedCrossRefPubMedCentralGoogle Scholar
  6. Baarends WM, Hoogerbrugge JW, Roest HP, Oooms M, Vreeburg J, Hoeijmakers JHJ, Grootegoed JA (1999) Histone ubiquitination and chromatin remodeling in mouse spermatogenesis. Dev Biol 207:322–333PubMedCrossRefPubMedCentralGoogle Scholar
  7. Baarends WM, Wassenaar E, Hoogerbrugge JW, Van Cappellen G, Roest HP, Vreeburg J, Ooms M, Hoeijmakers JH, Grootegoed JA (2003) Loss of HR6B ubiquitin-conjugating activity results in damaged synaptonemal complex structure and increased crossing-over frequency during the male meiotic prophase. Mol Cell Biol 23:1151–1162PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bai S, Fu K, Yin H, Cui Y, Yue Q, Li W, Cheng L, Tan H, Liu X, Guo Y, Zhang Y, Xie J, He W, Wang Y, Feng H, Xin C, Zhang J, Lin M, Shen B, Sun Z, Guo X, Zheng K, Ye L (2019, 10) Sox30 initiates transcription of haploid genes during late meiosis and spermiogenesis in mouse testes. Development 146Google Scholar
  9. Balhorn R (2007) The protamine family of sperm nuclear proteins. Genome Biol 8:227PubMedPubMedCentralCrossRefGoogle Scholar
  10. Balhorn R, Gledhill BL, Wyrobek AJ (1977) Mouse sperm chromatin proteins: quantitative isolation and partial characterization. Biochemistry 16:4074–4080PubMedCrossRefPubMedCentralGoogle Scholar
  11. Balhorn R, Reed S, Tanphaichitr N (1988) Aberrant protamine 1/protamine 2 ratios in sperm of infertile human males. Experientia 44:52–55PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bao J, Rousseaux S, Shen J, Lin K, Lu Y, Bedford MT (2018) The arginine methyltransferase CARM1 represses p300∗ACT∗CREMtau activity and is required for spermiogenesis. Nucleic Acids Res 46:4327–4343PubMedPubMedCentralCrossRefGoogle Scholar
  13. Barral S, Morozumi Y, Tanaka H, Montellier E, Govin J, De Dieuleveult M, Charbonnier G, Coute Y, Puthier D, Buchou T, Boussouar F, Urahama T, Fenaille F, Curtet S, Hery P, Fernandez-Nunez N, Shiota H, Gerard M, Rousseaux S, Kurumizaka H, Khochbin S (2017) Histone variant H2A.L.2 guides transition protein-dependent protamine assembly in male germ cells. Mol Cell 66:89–101 e8PubMedCrossRefPubMedCentralGoogle Scholar
  14. Baumeister P, Luo S, Skarnes WC, Sui G, Seto E, Shi Y, Lee AS (2005) Endoplasmic reticulum stress induction of the Grp78/BiP promoter: activating mechanisms mediated by YY1 and its interactive chromatin modifiers. Mol Cell Biol 25:4529–4540PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bell EL, Nagamori I, Williams EO, Del Rosario AM, Bryson BD, Watson N, White FM, Sassone-Corsi P, Guarente L (2014) SirT1 is required in the male germ cell for differentiation and fecundity in mice. Development 141:3495–3504PubMedPubMedCentralCrossRefGoogle Scholar
  16. Ben Khelifa M, Zouari R, Harbuz R, Halouani L, Arnoult C, Lunardi J, Ray PF (2011) A new AURKC mutation causing macrozoospermia: implications for human spermatogenesis and clinical diagnosis. Mol Hum Reprod 17:762–768PubMedPubMedCentralCrossRefGoogle Scholar
  17. Blendy JA, Kaestner KH, Weinbauer GF, Nieschlag E, Schütz G (1996) Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature 380:162–165PubMedCrossRefPubMedCentralGoogle Scholar
  18. Boussouar F, Goudarzi A, Buchou T, Shiota H, Barral S, Debernardi A, Guardiola P, Brindle P, Martinez G, Arnoult C, Khochbin S, Rousseaux S (2014) A specific CBP/p300-dependent gene expression programme drives the metabolic remodelling in late stages of spermatogenesis. Andrology 2:351–359PubMedCrossRefPubMedCentralGoogle Scholar
  19. Braun RE (2001) Packaging paternal chromosomes with protamine. Nature Genetics 28:10–12PubMedPubMedCentralGoogle Scholar
  20. Braun RE, Behringer RR, Peschon JJ, Brinster RL, Palmiter RD (1989) Genetically haploid spermatids are phenotypically diploid. Nature 337:373–376PubMedCrossRefPubMedCentralGoogle Scholar
  21. Brewer L, Corzett M, Balhorn R (2002) Condensation of DNA by spermatid basic nuclear proteins. J Biol Chem 277:38895–38900PubMedCrossRefPubMedCentralGoogle Scholar
  22. Brunner AM, Nanni P, Mansuy IM (2014) Epigenetic marking of sperm by post-translational modification of histones and protamines. Epigenetics Chromatin 7:2PubMedPubMedCentralCrossRefGoogle Scholar
  23. Brykczynska U, Hisano M, Erkek S, Ramos L, Oakeley EJ, Roloff TC, Beisel C, Schubeler D, Stadler MB, Peters AH (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17:679–687PubMedCrossRefPubMedCentralGoogle Scholar
  24. Caron C, Pivot-Pajot C, Van Grunsven LA, Col E, Lestrat C, Rousseaux S, Khochbin S (2003) Cdyl: a new transcriptional co-repressor. EMBO Rep 4:877–882PubMedPubMedCentralCrossRefGoogle Scholar
  25. Carone BR, Hung JH, Hainer SJ, Chou MT, Carone DM, Weng Z, Fazzio TG, Rando OJ (2014) High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm. Dev Cell 30:11–22PubMedPubMedCentralCrossRefGoogle Scholar
  26. Carrell DT, Emery BR, Hammoud S (2007) Altered protamine expression and diminished spermatogenesis: what is the link? Hum Reprod Update 13:313–327PubMedCrossRefPubMedCentralGoogle Scholar
  27. Champroux A, Cocquet J, Henry-Berger J, Drevet JR, Kocer A (2018) A decade of exploring the mammalian sperm epigenome: paternal epigenetic and transgenerational inheritance. Front Cell Dev Biol 6:50PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chen Y, Sprung R, Tang Y, Ball H, Sangras B, Kim SC, Falck JR, Peng J, Gu W, Zhao Y (2007) Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics 6:812–819PubMedPubMedCentralCrossRefGoogle Scholar
  29. Chen Y, Zheng Y, Gao Y, Lin Z, Yang S, Wang T, Wang Q, Xie N, Hua R, Liu M, Sha J, Griswold MD, Li J, Tang F, Tong MH (2018) Single-cell RNA-seq uncovers dynamic processes and critical regulators in mouse spermatogenesis. Cell Res 28:879–896PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cheng Y, Buffone MG, Kouadio M, Goodheart M, Page DC, Gerton GL, Davidson I, Wang PJ (2007) Abnormal sperm in mice lacking the taf7l gene. Mol Cell Biol 27:2582–2589PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chioccarelli T, Cacciola G, Altucci L, Lewis SE, Simon L, Ricci G, Ledent C, Meccariello R, Fasano S, Pierantoni R, Cobellis G (2010) Cannabinoid receptor 1 influences chromatin remodeling in mouse spermatids by affecting content of transition protein 2 mRNA and histone displacement. Endocrinology 151:5017–5029PubMedCrossRefPubMedCentralGoogle Scholar
  32. Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi YC, Hecht NB, Eddy EM (2001) Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat Genet 28:82–86PubMedPubMedCentralGoogle Scholar
  33. Cho C, Jung-Ha H, Willis WD, Goulding EH, Stein P, Xu Z, Schultz RM, Hecht NB, Eddy EM (2003) Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod 69:211–7Google Scholar
  34. da Cruz I, Rodriguez-Casuriaga R, Santinaque FF, Farias J, Curti G, Capoano CA, Folle GA, Benavente R, Sotelo-Silveira JR, Geisinger A (2016) Transcriptome analysis of highly purified mouse spermatogenic cell populations: gene expression signatures switch from meiotic-to postmeiotic-related processes at pachytene stage. BMC Genomics 17:294PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dadoune JP (2003) Expression of mammalian spermatozoal nucleoproteins. Microsc Res Tech 61:56–75PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dam AH, Koscinski I, Kremer JA, Moutou C, Jaeger AS, Oudakker AR, Tournaye H, Charlet N, Lagier-Tourenne C, Van Bokhoven H, Viville S (2007) Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am J Hum Genet 81:813–820PubMedPubMedCentralCrossRefGoogle Scholar
  37. Davila Garza SA, Patrizio P (2013) Reproductive outcomes in patients with male infertility because of Klinefelter's syndrome, Kartagener's syndrome, round-head sperm, dysplasia fibrous sheath, and 'stump' tail sperm: an updated literature review. Curr Opin Obstet Gynecol 25:229–246PubMedCrossRefGoogle Scholar
  38. De Vries M, Ramos L, Housein Z, De Boer P (2012) Chromatin remodelling initiation during human spermiogenesis. Biol Open 1:446–457PubMedPubMedCentralCrossRefGoogle Scholar
  39. Deng W, Lin H (2002) miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev Cell 2:819–830PubMedCrossRefPubMedCentralGoogle Scholar
  40. Dieterich K, Soto Rifo R, Faure AK, Hennebicq S, Ben Amar B, Zahi M, Perrin J, Martinez D, Sele B, Jouk PS, Ohlmann T, Rousseaux S, Lunardi J, Ray PF (2007) Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nat Genet 39:661–665PubMedCrossRefPubMedCentralGoogle Scholar
  41. Dong Y, Isono KI, Ohbo K, Endo TA, Ohara O, Maekawa M, Toyama Y, Ito C, Toshimori K, Helin K, Ogonuki N, Inoue K, Ogura A, Yamagata K, Kitabayashi I, Koseki H (2017) EPC1/TIP60-mediated histone acetylation facilitates spermiogenesis in mice. Mol Cell Biol 37(19)Google Scholar
  42. Doran J, Walters C, Kyle V, Wooding P, Hammett-Burke R, Colledge WH (2016) Mfsd14a (Hiat1) gene disruption causes globozoospermia and infertility in male mice. Reproduction 152:91–99PubMedCrossRefPubMedCentralGoogle Scholar
  43. Dottermusch-Heidel C, Gartner SM, Tegeder I, Rathke C, Barckmann B, Bartkuhn M, Bhushan S, Steger K, Meinhardt A, Renkawitz-Pohl R (2014a) H3K79 methylation: a new conserved mark that accompanies H4 hyperacetylation prior to histone-to-protamine transition in Drosophila and rat. Biol Open 3:444–452PubMedPubMedCentralCrossRefGoogle Scholar
  44. Dottermusch-Heidel C, Klaus ES, Gonzalez NH, Bhushan S, Meinhardt A, Bergmann M, Renkawitz-Pohl R, Rathke C, Steger K (2014b) H3K79 methylation directly precedes the histone-to-protamine transition in mammalian spermatids and is sensitive to bacterial infections. Andrology 2:655–665PubMedCrossRefPubMedCentralGoogle Scholar
  45. Doyen CM, Moshkin YM, Chalkley GE, Bezstarosti K, Demmers JA, Rathke C, Renkawitz-Pohl R, Verrijzer CP (2013) Subunits of the histone chaperone CAF1 also mediate assembly of protamine-based chromatin. Cell Rep 4:59–65PubMedCrossRefPubMedCentralGoogle Scholar
  46. El Kennani S, Adrait A, Permiakova O, Hesse AM, Ialy-Radio C, Ferro M, Brun V, Cocquet J, Govin J, Pflieger D (2018) Systematic quantitative analysis of H2A and H2B variants by targeted proteomics. Epigenetics Chromatin 11:2PubMedPubMedCentralCrossRefGoogle Scholar
  47. El Zowalaty AE, Baumann C, Li R, Chen W, De La Fuente R, Ye X (2015) Seipin deficiency increases chromocenter fragmentation and disrupts acrosome formation leading to male infertility. Cell Death Dis 6:e1817PubMedPubMedCentralCrossRefGoogle Scholar
  48. Erkek S, Hisano M, Liang CY, Gill M, Murr R, Dieker J, Schubeler D, Van Der Vlag J, Stadler MB, Peters AH (2013) Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat Struct Mol Biol 20:868–875PubMedCrossRefPubMedCentralGoogle Scholar
  49. Feng CA, Spiller C, Merriner DJ, O'Bryan MK, Bowles J, Koopman P (2017) SOX30 is required for male fertility in mice. Sci Rep 7:17619PubMedPubMedCentralCrossRefGoogle Scholar
  50. Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD, Bonner WM, Manova K, Burgoyne P, Nussenzweig A (2003) H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell 4:497–508PubMedCrossRefPubMedCentralGoogle Scholar
  51. Fujihara Y, Oji A, Larasati T, Kojima-Kita K, Ikawa M (2017) Human globozoospermia-related gene spata16 is required for sperm formation revealed by CRISPR/Cas9-mediated mouse models. Int J Mol Sci 18(10)Google Scholar
  52. Funaki T, Kon S, Tanabe K, Natsume W, Sato S, Shimizu T, Yoshida N, Wong WF, Ogura A, Ogawa T, Inoue K, Ogonuki N, Miki H, Mochida K, Endoh K, Yomogida K, Fukumoto M, Horai R, Iwakura Y, Ito C, Toshimori K, Watanabe T, Satake M (2013) The Arf GAP SMAP2 is necessary for organized vesicle budding from the trans-Golgi network and subsequent acrosome formation in spermiogenesis. Mol Biol Cell 24:2633–2644PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gatewood JM, Cook GR, Balhorn R, Schmid CW, Bradbury EM (1990) Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem 265:20662–20666PubMedPubMedCentralGoogle Scholar
  54. Gaucher J, Boussouar F, Montellier E, Curtet S, Buchou T, Bertrand S, Hery P, Jounier S, Depaux A, Vitte AL, Guardiola P, Pernet K, Debernardi A, Lopez F, Holota H, Imbert J, Wolgemuth DJ, Gerard M, Rousseaux S, Khochbin S (2012) Bromodomain-dependent stage-specific male genome programming by Brdt. EMBO J 31:3809–3820PubMedPubMedCentralCrossRefGoogle Scholar
  55. Godmann M, Auger V, Ferraroni-Aguiar V, Di Sauro A, Sette C, Behr R, Kimmins S (2007) Dynamic regulation of histone H3 methylation at lysine 4 in mammalian spermatogenesis. Biol Reprod 77:754–764PubMedCrossRefPubMedCentralGoogle Scholar
  56. Gou LT, Kang JY, Dai P, Wang X, Li F, Zhao S, Zhang M, Hua MM, Lu Y, Zhu Y, Li Z, Chen H, Wu LG, Li D, Fu XD, Li J, Shi HJ, Liu MF (2017) Ubiquitination-deficient mutations in human piwi cause male infertility by impairing histone-to-protamine xchange during spermiogenesis. Cell 169:1090–1104 e13PubMedPubMedCentralCrossRefGoogle Scholar
  57. Goudarzi A, Zhang D, Huang H, Barral S, Kwon OK, Qi S, Tang Z, Buchou T, Vitte AL, He T, Cheng Z, Montellier E, Gaucher J, Curtet S, Debernardi A, Charbonnier G, Puthier D, Petosa C, Panne D, Rousseaux S, Roeder RG, Zhao Y, Khochbin S (2016) Dynamic competing histone H4 K5K8 acetylation and butyrylation are hallmarks of highly active gene promoters. Mol Cell 62:169–180PubMedPubMedCentralCrossRefGoogle Scholar
  58. Govin J, Lestrat C, Caron C, Pivot-Pajot C, Rousseaux S, Khochbin S (2006) Histone acetylation-mediated chromatin compaction during mouse spermatogenesis. Ernst Schering Res Found Workshop (57):155–172Google Scholar
  59. Gupta N, Madapura MP, Bhat UA, Rao MR (2015) Mapping of post-translational modifications of transition proteins, TP1 and TP2, and identification of protein arginine methyltransferase 4 and lysine methyltransferase 7 as methyltransferase for TP2. J Biol Chem 290:12101–12122PubMedPubMedCentralCrossRefGoogle Scholar
  60. Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15:509–524PubMedCrossRefPubMedCentralGoogle Scholar
  61. Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478PubMedPubMedCentralCrossRefGoogle Scholar
  62. Han F, Liu C, Zhang L, Chen M, Zhou Y, Qin Y, Wang Y, Chen M, Duo S, Cui X, Bao S, Gao F (2017) Globozoospermia and lack of acrosome formation in GM130-deficient mice. Cell Death Dis 8:e2532PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hazzouri M, Pivot-Pajot C, Faure AK, Usson Y, Pelletier R, Sele B, Khochbin S, Rousseaux S (2000) Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone deacetylases. Eur J Cell Biol 79:950–960PubMedCrossRefPubMedCentralGoogle Scholar
  64. Hecht NB (1990) Regulation of ‘haploid expressed genes’ in male germ cells. J Reprod Fert 88:679–693CrossRefGoogle Scholar
  65. Hernandez-Hernandez A, Lilienthal I, Fukuda N, Galjart N, Hoog C (2016) CTCF contributes in a critical way to spermatogenesis and male fertility. Sci Rep 6:28355PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ihara M, Meyer-Ficca ML, Leu NA, Rao S, Li F, Gregory BD, Zalenskaya IA, Schultz RM, Meyer RG (2014) Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression. PLoS Genet 10:e1004317PubMedPubMedCentralCrossRefGoogle Scholar
  67. Jha KN, Tripurani SK, Johnson GR (2017) TSSK6 is required for gammaH2AX formation and the histone-to-protamine transition during spermiogenesis. J Cell Sci 130:1835–1844PubMedCrossRefPubMedCentralGoogle Scholar
  68. Jiang H, Gao Q, Zheng W, Yin S, Wang L, Zhong L, Ali A, Khan T, Hao Q, Fang H, Sun X, Xu P, Pandita TK, Jiang X, Shi Q (2018) MOF influences meiotic expansion of H2AX phosphorylation and spermatogenesis in mice. PLoS Genet 14:e1007300PubMedPubMedCentralCrossRefGoogle Scholar
  69. Jiang M, Gao M, Wu C, He H, Guo X, Zhou Z, Yang H, Xiao X, Liu G, Sha J (2014) Lack of testicular seipin causes teratozoospermia syndrome in men. Proc Natl Acad Sci U S A 111:7054–7059PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kang-Decker N, Mantchev GT, Juneja SC, Mcniven MA, Van Deursen JM (2001) Lack of acrosome formation in Hrb-deficient mice. Science 294:1531–1533PubMedCrossRefPubMedCentralGoogle Scholar
  71. Kashiwabara S, Noguchi J, Zhuang T, Ohmura K, Honda A, Sugiura S, Miyamoto K, Takahashi S, Inoue K, Ogura A, Baba T (2002) Regulation of spermatogenesis by testis-specific, cytoplasmic poly(A) polymerase TPAP. Science 298:1999–2002PubMedCrossRefPubMedCentralGoogle Scholar
  72. Khor B, Bredemeyer AL, Huang CY, Turnbull IR, Evans R, Maggi LB Jr, White JM, Walker LM, Carnes K, Hess RA, Sleckman BP (2006) Proteasome activator PA200 is required for normal spermatogenesis. Mol Cell Biol 26:2999–3007PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kierszenbaum AL, Rivkin E, Tres LL (2003) Acroplaxome, an F-actin-keratin-containing plate, anchors the acrosome to the nucleus during shaping of the spermatid head. Mol Biol Cell 14:4628–4640PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kimmins S, Crosio C, Kotaja N, Hirayama J, Monaco L, Hoog C, Van Duin M, Gossen JA, Sassone-Corsi P (2007) Differential functions of the Aurora-B and Aurora-C kinases in mammalian spermatogenesis. Mol Endocrinol 21:726–739PubMedCrossRefPubMedCentralGoogle Scholar
  75. Kimura T, Ito C, Watanabe S, Takahashi T, Ikawa M, Yomogida K, Fujita Y, Ikeuchi M, Asada N, Matsumiya K, Okuyama A, Okabe M, Toshimori K, Nakano T (2003) Mouse germ cell-less as an essential component for nuclear integrity. Mol Cell Biol 23:1304–1315PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kistler WS, Baas D, Lemeille S, Paschaki M, Seguin-Estevez Q, Barras E, Ma W, Duteyrat JL, Morle L, Durand B, Reith W (2015) RFX2 Is a major transcriptional regulator of spermiogenesis. PLoS Genet 11:e1005368PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kleene KC (1989) Poly(A) shortening accompanies the activation of translation of five mRNAs during spermiogenesis in the mouse. Development 106:367–373PubMedPubMedCentralGoogle Scholar
  78. Kleene KC (2013) Connecting cis-elements and trans-factors with mechanisms of developmental regulation of mRNA translation in meiotic and haploid mammalian spermatogenic cells. Reproduction 146:R1–19PubMedCrossRefPubMedCentralGoogle Scholar
  79. Koizumi H, Yamaguchi N, Hattori M, Ishikawa TO, Aoki J, Taketo MM, Inoue K, Arai H (2003) Targeted disruption of intracellular type I platelet activating factor-acetylhydrolase catalytic subunits causes severe impairment in spermatogenesis. J Biol Chem 278:12489–12494PubMedCrossRefPubMedCentralGoogle Scholar
  80. Korhonen HM, Meikar O, Yadav RP, Papaioannou MD, Romero Y, Da Ros M, Herrera PL, Toppari J, Nef S, Kotaja N (2011) Dicer is required for haploid male germ cell differentiation in mice. PLoS One 6:e24821PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kotaja N, De Cesare D, Macho B, Monaco L, Brancorsini S, Goossens E, Tournaye H, Gansmuller A, Sassone-Corsi P (2004) Abnormal sperm in mice with targeted deletion of the act (activator of cAMP-responsive element modulator in testis) gene. Proc Natl Acad Sci U S A 101:10620–10625PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lahn BT, Tang ZL, Zhou J, Barndt RJ, Parvinen M, Allis CD, Page DC (2002) Previously uncharacterized histone acetyltransferases implicated in mammalian spermatogenesis. Proc Natl Acad Sci U S A 99:8707–8712PubMedPubMedCentralCrossRefGoogle Scholar
  83. Leduc F, Maquennehan V, Nkoma GB, Boissonneault G (2008) DNA damage response during chromatin remodeling in elongating spermatids of mice. Biol Reprod 78:324–332PubMedCrossRefPubMedCentralGoogle Scholar
  84. Lee K, Fajardo MA, Braun RE (1996) A testis cytoplasmic RNA-binding protein that has the properties of a translational repressor. Mol Cell Biol 16:3023–3034PubMedPubMedCentralCrossRefGoogle Scholar
  85. Levesque D, Veilleux S, Caron N, Boissonneault G (1998) Architectural DNA-binding properties of the spermatidal transition proteins 1 and 2. Biochem Biophys Res Commun 252:602–609PubMedCrossRefPubMedCentralGoogle Scholar
  86. Li W, Wu J, Kim SY, Zhao M, Hearn SA, Zhang MQ, Meistrich ML, Mills AA (2014) Chd5 orchestrates chromatin remodelling during sperm development. Nat Commun 5:3812PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lin Q, Sirotkin A, Skoultchi AI (2000) Normal spermatogenesis in mice lacking the testis-specific linker histone H1t. Mol Cell Biol 20:2122–2128PubMedPubMedCentralCrossRefGoogle Scholar
  88. Lin YN, Roy A, Yan W, Burns KH, Matzuk MM (2007) Loss of zona pellucida binding proteins in the acrosomal matrix disrupts acrosome biogenesis and sperm morphogenesis. Mol Cell Biol 27:6794–6805PubMedPubMedCentralCrossRefGoogle Scholar
  89. Liu G, Shi QW, Lu GX (2010) A newly discovered mutation in PICK1 in a human with globozoospermia. Asian J Androl 12:556–560PubMedPubMedCentralCrossRefGoogle Scholar
  90. Liu S, Yu H, Liu Y, Liu X, Zhang Y, Bu C, Yuan S, Chen Z, Xie G, Li W, Xu B, Yang J, He L, Jin T, Xiong Y, Sun L, Liu X, Han C, Cheng Z, Liang J, Shang Y (2017) Chromodomain protein CDYL acts as a crotonyl-CoA hydratase to regulate histone crotonylation and spermatogenesis. Mol Cell 67:853–866 e5PubMedCrossRefPubMedCentralGoogle Scholar
  91. Lu LY, Wu J, Ye L, Gavrilina GB, Saunders TL, Yu X (2010) RNF8-dependent histone modifications regulate nucleosome removal during spermatogenesis. Dev Cell 18:371–384PubMedPubMedCentralCrossRefGoogle Scholar
  92. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260PubMedCrossRefPubMedCentralGoogle Scholar
  93. Macho B, Brancorsini S, Fimia GM, Setou M, Hirokawa N, Sassone-Corsi P (2002) CREM-dependent transcription in male germ cells controlled by a kinesin. Science 298:2388–2390PubMedCrossRefPubMedCentralGoogle Scholar
  94. Mahadevaiah SK, Turner JMA, Baudat F, Rogakou EP, De Boer P, Blanco-Rodriguez J, Jasin M, Keeney S, Bonner WM, Burgoyne PS (2001) Recombinational DNA double-strand breaks in mice precede synapsis. Nat Genet 27:271–276PubMedCrossRefPubMedCentralGoogle Scholar
  95. Manterola M, Brown TM, Oh MY, Garyn C, Gonzalez BJ, Wolgemuth DJ (2018) BRDT is an essential epigenetic regulator for proper chromatin organization, silencing of sex chromosomes and crossover formation in male meiosis. PLoS Genet 14:e1007209PubMedPubMedCentralCrossRefGoogle Scholar
  96. Martianov I, Brancorsini S, Catena R, Gansmuller A, Kotaja N, Parvinen M, Sassone-Corsi P, Davidson I (2005) Polar nuclear localization of H1T2, a histone H1 variant, required for spermatid elongation and DNA condensation during spermiogenesis. Proc Natl Acad Sci U S A 102:2808–2813PubMedPubMedCentralCrossRefGoogle Scholar
  97. Marushige K, Marushige Y, Wong TK (1976) Complete displacement of somatic histones during transformation of spermatid chromatin: a model experiment. Biochemistry 15:2047–2053PubMedCrossRefPubMedCentralGoogle Scholar
  98. Mcghee JD, Felsenfeld G (1980) Nucleosome structure. Annu Rev Biochem 49:1115–1156PubMedCrossRefPubMedCentralGoogle Scholar
  99. Mcgraw S, Morin G, Vigneault C, Leclerc P, Sirard MA (2007) Investigation of MYST4 histone acetyltransferase and its involvement in mammalian gametogenesis. BMC Dev Biol 7:123PubMedPubMedCentralCrossRefGoogle Scholar
  100. Mcpherson SM, Longo FJ (1993) Nicking of rat spermatid and spermatozoa DNA: possible involvement of DNA topoisomerase II. Dev Biol 158:122–130PubMedCrossRefPubMedCentralGoogle Scholar
  101. Meetei AR, Ullas KS, Vasupradha V, Rao MR (2002) Involvement of protein kinase A in the phosphorylation of spermatidal protein TP2 and its effect on DNA condensation. Biochemistry 41:185–195PubMedCrossRefPubMedCentralGoogle Scholar
  102. Meikar O, Vagin VV, Chalmel F, Sostar K, Lardenois A, Hammell M, Jin Y, Da Ros M, Wasik KA, Toppari J, Hannon GJ, Kotaja N (2014) An atlas of chromatoid body components. RNA 20:483–495PubMedPubMedCentralCrossRefGoogle Scholar
  103. Meyer-Ficca ML, Ihara M, Lonchar JD, Meistrich ML, Austin CA, Min W, Wang ZQ, Meyer RG (2011a) Poly(ADP-ribose) metabolism is essential for proper nucleoprotein exchange during mouse spermiogenesis. Biol Reprod 84:218–228PubMedCrossRefPubMedCentralGoogle Scholar
  104. Meyer-Ficca ML, Lonchar JD, Ihara M, Meistrich ML, Austin CA, Meyer RG (2011b) Poly(ADP-ribose) polymerases PARP1 and PARP2 modulate topoisomerase II beta (TOP2B) function during chromatin condensation in mouse spermiogenesis. Biol Reprod 84:900–909PubMedPubMedCentralCrossRefGoogle Scholar
  105. Mishra LN, Shalini V, Gupta N, Ghosh K, Suthar N, Bhaduri U, Rao MRS (2018) Spermatid-specific linker histone HILS1 is a poor condenser of DNA and chromatin and preferentially associates with LINE-1 elements. Epigenetics Chromatin 11:43PubMedPubMedCentralCrossRefGoogle Scholar
  106. Montellier E, Boussouar F, Rousseaux S, Zhang K, Buchou T, Fenaille F, Shiota H, Debernardi A, Hery P, Curtet S, Jamshidikia M, Barral S, Holota H, Bergon A, Lopez F, Guardiola P, Pernet K, Imbert J, Petosa C, Tan M, Zhao Y, Gerard M, Khochbin S (2013) Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes Dev 27:1680–1692PubMedPubMedCentralCrossRefGoogle Scholar
  107. Moretti C, Serrentino ME, Ialy-Radio C, Delessard M, Soboleva TA, Tores F, Leduc M, Nitschke P, Drevet JR, Tremethick DJ, Vaiman D, Kocer A, Cocquet J (2017) SLY regulates genes involved in chromatin remodeling and interacts with TBL1XR1 during sperm differentiation. Cell Death Differ 24:1029–1044PubMedPubMedCentralCrossRefGoogle Scholar
  108. Mulugeta Achame E, Wassenaar E, Hoogerbrugge JW, Sleddens-Linkels E, Ooms M, Sun ZW, Van IWF, Grootegoed JA, Baarends WM (2010) The ubiquitin-conjugating enzyme HR6B is required for maintenance of X chromosome silencing in mouse spermatocytes and spermatids. BMC Genomics 11:367PubMedPubMedCentralCrossRefGoogle Scholar
  109. Nair M, Nagamori I, Sun P, Mishra DP, Rheaume C, Li B, Sassone-Corsi P, Dai X (2008) Nuclear regulator Pygo2 controls spermiogenesis and histone H3 acetylation. Dev Biol 320:446–455PubMedPubMedCentralCrossRefGoogle Scholar
  110. Nantel F, Monaco L, Foulkes NS, Masquiller D, Lemeur M, Henriksén K, Dierich A, Parvinen M, Sassone-Corsi P (1996) Spermiogenesis deficiency and germ-cell apoptosis in CREM-mutant mice. Nature 380:159–162PubMedCrossRefPubMedCentralGoogle Scholar
  111. Nayernia K, Vauti F, Meinhardt A, Cadenas C, Schweyer S, Meyer BI, Schwandt I, Chowdhury K, Engel W, Arnold HH (2003) Inactivation of a testis-specific Lis1 transcript in mice prevents spermatid differentiation and causes male infertility. J Biol Chem 278:48377–48385PubMedCrossRefPubMedCentralGoogle Scholar
  112. Nili E, Cojocaru GS, Kalma Y, Ginsberg D, Copeland NG, Gilbert DJ, Jenkins NA, Berger R, Shaklai S, Amariglio N, Brok-simoni F, Simon AJ, Rechavi G (2001) Nuclear membrane protein LAP2beta mediates transcriptional repression alone and together with its binding partner GCL (germ-cell-less). J Cell Sci 114:3297–3307PubMedPubMedCentralGoogle Scholar
  113. Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y (2007) Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 450:119–123PubMedCrossRefPubMedCentralGoogle Scholar
  114. Oliva R, Bazett-Jones D, Mezquita C, Dixon GH (1987) Factors affecting nucleosome disassembly by protamines in vitro. Histone hyperacetylation and chromatin structure, time dependence, and the size of the sperm nuclear proteins. J Biol Chem 262:17016–17025PubMedPubMedCentralGoogle Scholar
  115. Oliva R, Mezquita C (1986) Marked differences in the ability of distinct protamines to disassemble nucleosomal core particles in vitro. Biochemistry 25:6508–6511PubMedCrossRefPubMedCentralGoogle Scholar
  116. Paiardi C, Pasini ME, Gioria M, Berruti G (2011) Failure of acrosome formation and globozoospermia in the wobbler mouse, a Vps54 spontaneous recessive mutant. Spermatogenesis 1:52–62PubMedPubMedCentralCrossRefGoogle Scholar
  117. Pattabiraman S, Baumann C, Guisado D, Eppig JJ, Schimenti JC, De La Fuente R (2015) Mouse BRWD1 is critical for spermatid postmeiotic transcription and female meiotic chromosome stability. J Cell Biol 208:53–69PubMedPubMedCentralCrossRefGoogle Scholar
  118. Philipps DL, Wigglesworth K, Hartford SA, Sun F, Pattabiraman S, Schimenti K, Handel M, Eppig JJ, Schimenti JC (2008) The dual bromodomain and WD repeat-containing mouse protein BRWD1 is required for normal spermiogenesis and the oocyte-embryo transition. Dev Biol 317:72–82PubMedPubMedCentralCrossRefGoogle Scholar
  119. Pierre V, Martinez G, Coutton C, Delaroche J, Yassine S, Novella C, Pernet-Gallay K, Hennebicq S, Ray PF, Arnoult C (2012) Absence of Dpy19l2, a new inner nuclear membrane protein, causes globozoospermia in mice by preventing the anchoring of the acrosome to the nucleus. Development 139:2955–2965PubMedCrossRefPubMedCentralGoogle Scholar
  120. Pivot-Pajot C, Caron C, Govin J, Vion A, Rousseaux S, Khochbin S (2003) Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Mol Cell Biol 23:5354–5365PubMedPubMedCentralCrossRefGoogle Scholar
  121. Pradeepa MM, Nikhil G, Hari Kishore A, Bharath GN, Kundu TK, Rao MR (2009) Acetylation of transition protein 2 (TP2) by KAT3B (p300) alters its DNA condensation property and interaction with putative histone chaperone NPM3. J Biol Chem 284:29956–29967PubMedPubMedCentralCrossRefGoogle Scholar
  122. Qian MX, Pang Y, Liu CH, Haratake K, Du BY, Ji DY, Wang GF, Zhu QQ, Song W, Yu Y, Zhang XX, Huang HT, Miao S, Chen LB, Zhang ZH, Liang YN, Liu S, Cha H, Yang D, Zhai Y, Komatsu T, Tsuruta F, Li H, Cao C, Li W, Li GH, Cheng Y, Chiba T, Wang L, Goldberg AL, Shen Y, Qiu XB (2013) Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell 153:1012–1024PubMedPubMedCentralCrossRefGoogle Scholar
  123. Rathke C, Baarends WM, Jayaramaiah-Raja S, Bartkuhn M, Renkawitz R, Renkawitz-Pohl R (2007) Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila. J Cell Sci 120:1689–1700PubMedCrossRefPubMedCentralGoogle Scholar
  124. Ray PF, Toure A, Metzler-Guillemain C, Mitchell MJ, Arnoult C, Coutton C (2017) Genetic abnormalities leading to qualitative defects of sperm morphology or function. Clin Genet 91:217–232PubMedCrossRefPubMedCentralGoogle Scholar
  125. Roca J, Mezquita C (1989) DNA topoisomerase II activity in nonreplicating, transcriptionally inactive, chicken late spermatids. EMBO J 8:1855–1860PubMedPubMedCentralCrossRefGoogle Scholar
  126. Roest HP, Van Klaveren J, De Wit J, Van Gurp CG, Koken MH, Vermey M, Van Roijen JH, Hoogerbrugge JW, Vreeburg JT, Baarends WM, Bootsma D, Grootegoed JA, Hoeijmakers JH (1996) Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell 86:799–810PubMedCrossRefPubMedCentralGoogle Scholar
  127. Royo H, Stadler MB, Peters A (2016) Alternative computational analysis shows no evidence for nucleosome enrichment at repetitive sequences in mammalian spermatozoa. Dev Cell 37:98–104PubMedCrossRefPubMedCentralGoogle Scholar
  128. Russell LD, Hikim APS, Ettlin RA, Clegg ED (1990) Histological and histopathological evaluation of the testis. Cache River Press, ClearwaterGoogle Scholar
  129. Riel JM, Yamauchi Y, Sugawara A, Li HY, Ruthig V, Stoytcheva Z, Ellis PJ, Cocquet J, Ward MA (2013) Deficiency of the multi-copy mouse Y gene Sly causes sperm DNA damage and abnormal chromatin packaging. J Cell Sci 126:803–13Google Scholar
  130. Sabari BR, Tang Z, Huang H, Yong-Gonzalez V, Molina H, Kong HE, Dai L, Shimada M, Cross JR, Zhao Y, Roeder RG, Allis CD (2015) Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell 58:203–215PubMedPubMedCentralCrossRefGoogle Scholar
  131. Sabari BR, Zhang D, Allis CD, Zhao Y (2017) Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 18:90–101PubMedCrossRefPubMedCentralGoogle Scholar
  132. Samans B, Yang Y, Krebs S, Sarode GV, Blum H, Reichenbach M, Wolf E, Steger K, Dansranjavin T, Schagdarsurengin U (2014) Uniformity of nucleosome preservation pattern in Mammalian sperm and its connection to repetitive DNA elements. Dev Cell 30:23–35PubMedCrossRefPubMedCentralGoogle Scholar
  133. Sassone-Corsi P (2002) Unique chromatin remodeling and transcriptional regulation in spermatogenesis. Science 296:2176–2178PubMedCrossRefPubMedCentralGoogle Scholar
  134. Schneider S, Balbach M, Jan FJ, Fietz D, Nettersheim D, Jostes S, Schmidt R, Kressin M, Bergmann M, Wachten D, Steger K, Schorle H (2016) Re-visiting the Protamine-2 locus: deletion, but not haploinsufficiency, renders male mice infertile. Sci Rep 6:36764PubMedPubMedCentralCrossRefGoogle Scholar
  135. Sediva A, Smith CI, Asplund AC, Hadac J, Janda A, Zeman J, Hansikova H, Dvorakova L, Mrazova L, Velbri S, Koehler C, Roesch K, Sullivan KE, Futatani T, Ochs HD (2007) Contiguous X-chromosome deletion syndrome encompassing the BTK, TIMM8A, TAF7L, and DRP2 genes. J Clin Immunol 27:640–646PubMedCrossRefPubMedCentralGoogle Scholar
  136. Shang E, Nickerson HD, Wen D, Wang X, Wolgemuth DJ (2007) The first bromodomain of Brdt, a testis-specific member of the BET sub-family of double-bromodomain-containing proteins, is essential for male germ cell differentiation. Development 134:3507–3515PubMedCrossRefPubMedCentralGoogle Scholar
  137. Shinagawa T, Huynh LM, Takagi T, Tsukamoto D, Tomaru C, Kwak HG, Dohmae N, Noguchi J, Ishii S (2015) Disruption of Th2a and Th2b genes causes defects in spermatogenesis. Development 142:1287–1292PubMedCrossRefPubMedCentralGoogle Scholar
  138. Shiota H, Barral S, Buchou T, Tan M, Coute Y, Charbonnier G, Reynoird N, Boussouar F, Gerard M, Zhu M, Bargier L, Puthier D, Chuffart F, Bourova-Flin E, Picaud S, Filippakopoulos P, Goudarzi A, Ibrahim Z, Panne D, Rousseaux S, Zhao Y, Khochbin S (2018) Nut directs p300-dependent, genome-wide H4 hyperacetylation in male germ cells. Cell Rep 24:3477–3487 e6PubMedCrossRefPubMedCentralGoogle Scholar
  139. Siklenka K, Erkek S, Godmann M, Lambrot R, Mcgraw S, Lafleur C, Cohen T, Xia J, Suderman M, Hallett M, Trasler J, Peters AH, Kimmins S (2015) Disruption of histone methylation in developing sperm impairs offspring health transgenerationally. Science 350(6261):aab2006PubMedCrossRefPubMedCentralGoogle Scholar
  140. Sin HS, Barski A, Zhang F, Kartashov AV, Nussenzweig A, Chen J, Andreassen PR, Namekawa SH (2012) RNF8 regulates active epigenetic modifications and escape gene activation from inactive sex chromosomes in post-meiotic spermatids. Genes Dev 26:2737–2748PubMedPubMedCentralCrossRefGoogle Scholar
  141. Song N, Liu J, An S, Nishino T, Hishikawa Y, Koji T (2011) Immunohistochemical analysis of histone H3 modifications in germ cells during mouse spermatogenesis. Acta Histochem Cytochem 44:183–190PubMedPubMedCentralCrossRefGoogle Scholar
  142. Sosnik J, Miranda PV, Spiridonov NA, Yoon SY, Fissore RA, Johnson GR, Visconti PE (2009) Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. J Cell Sci 122:2741–2749PubMedPubMedCentralCrossRefGoogle Scholar
  143. Steger K (1999) Transcriptional and translational regulation of gene expression in haploid spermatids. Anat Embryol (Berl) 199:471–487CrossRefGoogle Scholar
  144. Takeda N, Yoshinaga K, Furushima K, Takamune K, Li Z, Abe S, Aizawa S, Yamamura K (2016) Viable offspring obtained from Prm1-deficient sperm in mice. Sci Rep 6:27409PubMedPubMedCentralCrossRefGoogle Scholar
  145. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146:1016–1028PubMedPubMedCentralCrossRefGoogle Scholar
  146. Tanaka H, Iguchi N, Isotani A, Kitamura K, Toyama Y, Matsuoka Y, Onishi M, Masai K, Maekawa M, Toshimori K, Okabe M, Nishimune Y (2005) HANP1/H1T2, a novel histone H1-like protein involved in nuclear formation and sperm fertility. Mol Cell Biol 25:7107–7119PubMedPubMedCentralCrossRefGoogle Scholar
  147. Tang MC, Jacobs SA, Wong LH, Mann JR (2013) Conditional allelic replacement applied to genes encoding the histone variant H3.3 in the mouse. Genesis 51:142–146PubMedCrossRefPubMedCentralGoogle Scholar
  148. Teperek M, Simeone A, Gaggioli V, Miyamoto K, Allen GE, Erkek S, Kwon T, Marcotte EM, Zegerman P, Bradshaw CR, Peters AH, Gurdon JB, Jullien J (2016) Sperm is epigenetically programmed to regulate gene transcription in embryos. Genome Res 26:1034–1046PubMedPubMedCentralCrossRefGoogle Scholar
  149. Ullas KS, Rao MR (2003) Phosphorylation of rat spermatidal protein TP2 by sperm-specific protein kinase A and modulation of its transport into the haploid nucleus. J Biol Chem 278:52673–52680PubMedCrossRefPubMedCentralGoogle Scholar
  150. Van Der Heijden GW, Derijck AA, Posfai E, Giele M, Pelczar P, Ramos L, Wansink DG, Van Der Vlag J, Peters AH, De Boer P (2007) Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation. Nat Genet 39:251–258PubMedCrossRefPubMedCentralGoogle Scholar
  151. Vilfan ID, Conwell CC, Hud NV (2004) Formation of native-like mammalian sperm cell chromatin with folded bull protamine. J Biol Chem 279:20088–20095PubMedCrossRefPubMedCentralGoogle Scholar
  152. Wan L, Hu XJ, Yan SX, Chen F, Cai B, Zhang XM, Wang T, Yu XB, Xiang AP, Li WQ (2013) Generation and neuronal differentiation of induced pluripotent stem cells in Cdyl-/- mice. Neuroreport 24:114–119PubMedCrossRefPubMedCentralGoogle Scholar
  153. Wang G, Zhang H, Wang L, Wang Y, Huang H, Sun F (2015) Ca(2+)/calmodulin-dependent protein kinase IV promotes interplay of proteins in chromatoid body of male germ cells. Sci Rep 5:12126PubMedPubMedCentralCrossRefGoogle Scholar
  154. Wang H, Wan H, Li X, Liu W, Chen Q, Wang Y, Yang L, Tang H, Zhang X, Duan E, Zhao X, Gao F, Li W (2014) Atg7 is required for acrosome biogenesis during spermatogenesis in mice. Cell Res 24:852–869PubMedPubMedCentralCrossRefGoogle Scholar
  155. Ward WS, Coffey DS (1991) DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod 44:569–574PubMedCrossRefPubMedCentralGoogle Scholar
  156. White-Cooper H, Davidson I (2011) Unique aspects of transcription regulation in male germ cells. Cold Spring Harb Perspect Biol 3(7)Google Scholar
  157. Willmitzer L, Bode J, Wagner KG (1977) Phosphorylated protamines. I. Binding stoichiometry and thermal stability of complexes in DNA. Nucleic Acids Res 4:149–162PubMedPubMedCentralCrossRefGoogle Scholar
  158. Wolffe AP (1997) Histone H1. Int J Biochem Cell Biol 29:1463–1466PubMedCrossRefPubMedCentralGoogle Scholar
  159. Wu JY, Means AR (2000) Ca(2+)/calmodulin-dependent protein kinase IV is expressed in spermatids and targeted to chromatin and the nuclear matrix. J Biol Chem 275:7994–7999PubMedCrossRefPubMedCentralGoogle Scholar
  160. Wu JY, Ribar TJ, Cummings DE, Burton KA, Mcknight GS, Means AR (2000) Spermiogenesis and exchange of basic nuclear proteins are impaired in male germ cells lacking Camk4. Nat Genet 25:448–452PubMedCrossRefPubMedCentralGoogle Scholar
  161. Xiao N, Kam C, Shen C, Jin W, Wang J, Lee KM, Jiang L, Xia J (2009) PICK1 deficiency causes male infertility in mice by disrupting acrosome formation. J Clin Invest 119:802–812PubMedPubMedCentralCrossRefGoogle Scholar
  162. Xu X, Toselli PA, Russell LD, Seldin DC (1999) Globozoospermia in mice lacking the casein kinase II alpha' catalytic subunit. Nat Genet 23:118–121PubMedCrossRefGoogle Scholar
  163. Yan W, Assadi AH, Wynshaw-Boris A, Eichele G, Matzuk MM, Clark GD (2003a) Previously uncharacterized roles of platelet-activating factor acetylhydrolase 1b complex in mouse spermatogenesis. Proc Natl Acad Sci U S A 100:7189–7194PubMedPubMedCentralCrossRefGoogle Scholar
  164. Yan W, Ma L, Burns KH, Matzuk MM (2003b) HILS1 is a spermatid-specific linker histone H1-like protein implicated in chromatin remodeling during mammalian spermiogenesis. Proc Natl Acad Sci U S A 100:10546–10551PubMedPubMedCentralCrossRefGoogle Scholar
  165. Yao R, Ito C, Natsume Y, Sugitani Y, Yamanaka H, Kuretake S, Yanagida K, Sato A, Toshimori K, Noda T (2002) Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci U S A 99:11211–11216PubMedPubMedCentralCrossRefGoogle Scholar
  166. Yassine S, Escoffier J, Martinez G, Coutton C, Karaouzene T, Zouari R, Ravanat JL, Metzler-Guillemain C, Lee HC, Fissore R, Hennebicq S, Ray PF, Arnoult C (2015) Dpy19l2-deficient globozoospermic sperm display altered genome packaging and DNA damage that compromises the initiation of embryo development. Mol Hum Reprod 21:169–185PubMedCrossRefPubMedCentralGoogle Scholar
  167. Yildiz Y, Matern H, Thompson B, Allegood JC, Warren RL, Ramirez DM, Hammer RE, Hamra FK, Matern S, Russell DW (2006) Mutation of beta-glucosidase 2 causes glycolipid storage disease and impaired male fertility. J Clin Invest 116:2985–2994PubMedPubMedCentralCrossRefGoogle Scholar
  168. Yoshida K, Muratani M, Araki H, Miura F, Suzuki T, Dohmae N, Katou Y, Shirahige K, Ito T, Ishii S (2018) Mapping of histone-binding sites in histone replacement-completed spermatozoa. Nat Commun 9:3885PubMedPubMedCentralCrossRefGoogle Scholar
  169. Yu YE, Zhang Y, Unni E, Shirley CR, Deng JM, Russell LD, Weil MM, Behringer R, Meistrich M (2000) Abnormal spermatogenesis and reduced fertility in transition nuclear protein 1-deficient mice. Proc Natl Acad Sci U S A 97:4683–4688PubMedPubMedCentralCrossRefGoogle Scholar
  170. Yuen BT, Bush KM, Barrilleaux BL, Cotterman R, Knoepfler PS (2014) Histone H3.3 regulates dynamic chromatin states during spermatogenesis. Development 141:3483–3494PubMedPubMedCentralCrossRefGoogle Scholar
  171. Yamaguchi K, Hada M, Fukuda Y, Inoue E, Makino Y, Katou Y, Shirahige K, OKADA Y (2018) Re-evaluating the Localization of Sperm-Retained Histones Revealed the Modification-Dependent Accumulation in Specific Genome Regions. Cell Rep 23:3920–3932Google Scholar
  172. Zhang D, Penttila TL, Morris PL, Teichmann M, Roeder RG (2001) Spermiogenesis deficiency in mice lacking the Trf2 gene. Science 292:1153–1155PubMedCrossRefPubMedCentralGoogle Scholar
  173. Zhang D, Xie D, Lin X, Ma L, Chen J, Zhang D, Wang Y, Duo S, Feng Y, Zheng C, Jiang B, Ning Y, Han C (2018) The transcription factor SOX30 is a key regulator of mouse spermiogenesis. Development 145(11)Google Scholar
  174. Zhao M, Shirley CR, Hayashi S, Marcon L, Mohapatra B, Suganuma R, Behringer RR, Boissonneault G, Yanagimachi R, Meistrich ML (2004) Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis 38:200–213PubMedPubMedCentralCrossRefGoogle Scholar
  175. Zhao M, Shirley CR, Yu YE, Mohapatra B, Zhang Y, Unni E, Deng JM, Arango NA, Terry NH, Weil MM, Russell LD, Behringer RR, Meistrich ML (2001) Targeted disruption of the transition protein 2 gene affects sperm chromatin structure and reduces fertility in mice. Mol Cell Biol 21:7243–7255PubMedPubMedCentralCrossRefGoogle Scholar
  176. Zhong J, Peters AH, lee K, Braun RE (1999) A double-stranded RNA binding protein required for activation of repressed messages in mammalian germ cells. Nat Genet 22:171–174PubMedCrossRefPubMedCentralGoogle Scholar
  177. Zhou H, Grubisic I, Zheng K, He Y, Wang PJ, Kaplan T, Tjian R (2013) Taf7l cooperates with Trf2 to regulate spermiogenesis. Proc Natl Acad Sci U S A 110:16886–16891PubMedPubMedCentralCrossRefGoogle Scholar
  178. Zhuang T, Hess RA, Kolla V, Higashi M, Raabe TD, Brodeur GM (2014) CHD5 is required for spermiogenesis and chromatin condensation. Mech Dev 131:35–46PubMedCrossRefPubMedCentralGoogle Scholar
  179. Zuo X, Rong B, Li L, Lv R, Lan F, Tong MH (2018) The histone methyltransferase SETD2 is required for expression of acrosin-binding protein 1 and protamines and essential for spermiogenesis in mice. J Biol Chem 293:9188–9197PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.INSERM, U1016, Institut CochinParisFrance
  2. 2.CNRS, UMR8104ParisFrance
  3. 3.Université Paris Descartes, Sorbonne Paris Cité, Faculté de MédecineParisFrance

Personalised recommendations