Internal Material Flows in the Earth and Their Effects on the Society

  • Attila Kerényi
  • Richard William McIntosh
Part of the Sustainable Development Goals Series book series (SDGS)


Flows of the low viscosity molten iron in the outer core of Earth produce the magnetic field of the planet via the feature called “geodynamo”. The beneficial effects of this field on the biosphere are analysed in this chapter. Beneficial and disadvantageous effects of volcanism are discussed in detail. The spatial distribution of active volcanoes on Earth is presented together with their local and global effects on the basis of Volcanic Explosivity Index. Prevention possibilities against volcanic eruptions are also discussed including the methods of prediction. Reasons and types of earthquakes, the European Macroseismic Scale for intensity and Richter’s scale are also presented. Devastating earthquakes and volcanic eruptions with most casualties are mentioned together with the effects of the latter on the climate. Reasons and consequences of human-induced earthquakes are analysed. Finally, some methods of prevention and accommodation and the effects of volcanism and earthquakes on sustainable development are discussed.


Geodynamo Geomagnetic field Volcanism Volcanic explosivity index Climatic anomaly Earthquakes European Macroseismic Scale Human-induced earthquakes Natural hazards 


  1. Abramovitz JN (2001) Averting unnatural disasters. In: Starke L (ed) State of the world 2001: a Worldwatch Institute report on progress toward a sustainable society. W. W. Norton, New York, pp 123–142Google Scholar
  2. Ansal A (ed) (2014) Perspectives on European earthquake engineering and seismology, vol 1. 2nd European conference on earthquake engineering and seismology, Istanbul, 24–29 August 2014. Geotechnical, geological and earthquake engineering, vol 34. Springer, Cham, p 650Google Scholar
  3. Brantley S, Myers B (2000) Mount St. Helens: from the 1980 eruption to 2000. In: U.S. Geological Survey Fact Sheet 036-00. U.S. Geological Survey. Accessed 21 Aug 2018
  4. Davies R, Foulger G, Bindley A et al (2013) Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons. Mar Pet Geol 45:171–185. Scholar
  5. Evans KF, Zappone A, Kraft T et al (2012) A survey of the induced seismic responses to fluid injection in geothermal and CO2 reservoirs in Europe. Geothermics 41:30–54. Scholar
  6. Flannery T (2005) The weather makers: the history and future impact of climate change. Text Publishing, MelbourneGoogle Scholar
  7. Foulger GR, Wilson MP, Gluyas JG et al (2018) Global review of human-induced earthquakes. Earth Sci Rev 178:438–514. Scholar
  8. GISTEMP Team (2018) GISS Surface Temperature Analysis (GISTEMP). NASA Goddard Institute for Space Studies. Accessed 30 Sept 2018
  9. Hábermayer T, Hartner P, Muhoray Á (2018) A globális katasztrófa előrejelző és koordinációs, valamint a közösségi veszélyhelyzeti kommunikációs és információs rendszerek bemutatása (The introduction of global disaster alert (GDACS) and the common emergency communication and information (CECIS) systems). Hadmérnök 13(3):203–218Google Scholar
  10. Harangi S (2015) Vulkánok: a Kárpát-Pannon térség tűzhányói. (Volcanoes in the Carpathian-Pannonian region). GeoLitera, SzegedGoogle Scholar
  11. Karátson D (2013) A belső erők felszínformálása (Internal forces shaping the surface). In: Gábris G (ed) Általános természetföldrajz (Physical Geography) II. ELTE Eötvös Kiadó, BudapestGoogle Scholar
  12. Kundu B, Legrand D, Gahalaut K et al (2012) The 2005 volcano-tectonic earthquake swarm in the Andaman Sea: triggered by the 2004 great Sumatra-Andaman earthquake. Tectonics 31. Scholar
  13. Lin CH (2005) Seismicity increase after the construction of the world’s tallest building: an active blind fault beneath the Taipei 101. Geophys Res Lett. Scholar
  14. Lindsey R (2010) World of change: devastation and recovery at Mt. St. Helens. Accessed 21 Aug 2018
  15. Lockwood JP, Hazlett RW (2010) Volcanoes: global perspectives. Wiley-Blackwell, ChichesterGoogle Scholar
  16. Lovett RA (2000) Mount St Helens, revisited. Science 288:1578–1579CrossRefGoogle Scholar
  17. Lowrie W (2007) Fundamentals of geophysics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  18. McGarr A (2014) Maximum magnitude earthquakes induced by fluid injection. J Geophys Res Solid Earth 119:1008–1019. Scholar
  19. Minnis P, Harrison EF, Stowe LL et al (1993) Radiative climate forcing by the Mount Pinatubo eruption. Science 259:1411–1415CrossRefGoogle Scholar
  20. Newhall CG, Self S (1982) The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. J Geophys Res Oceans 87:1231–1238. Scholar
  21. Smithsonian Institution (2013) Global volcanism program: volcanoes of the world v. 4.6.4. 10.5479/si.GVP.VOTW4-2013. Accessed 3 Sept 2018Google Scholar
  22. Stein S, Liu M, Camelbeeck T et al (2015) Challenges in assessing seismic hazard in intraplate Europe. In: Landgraf A, KüblerS, Hintersberger E et al (eds) Seismicity, fault rupture and earthquake hazards in slowly deforming regions. Special publications, 432. Geological Society, London, pp 13–28CrossRefGoogle Scholar
  23. Varga P (2017) Indukáltföldrengések (Induced earthquakes). Természet Világa (World of Nature) 148(3):107–111Google Scholar
  24. Williams M (2015) What are the Earth’s layers? In: Universe today. Accessed 15 Oct 2018
  25. Wilson MP, Davies RJ, Foulger GR et al (2015) Anthropogenic earthquakes in the UK: a national baseline prior to shale exploitation. Mar Pet Geol 68:1–17. Scholar
  26. Yakovlev DV, Lazarevich TI, Tsirel SV (2013) Natural and induced seismic activity in Kuzbass. J Min Sci 49:862–872. Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Attila Kerényi
    • 1
  • Richard William McIntosh
    • 2
  1. 1.Landscape Protection and Environmental GeographyUniversity of DebrecenDebrecenHungary
  2. 2.Mineralogy and GeologyUniversity of DebrecenDebrecenHungary

Personalised recommendations