Unsupervised Mitral Valve Segmentation in Echocardiography with Neural Network Matrix Factorization

  • Luca CorinziaEmail author
  • Jesse Provost
  • Alessandro Candreva
  • Maurizio Tamarasso
  • Francesco Maisano
  • Joachim M. Buhmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11526)


Mitral valve segmentation specifies a crucial first step to establish a machine learning pipeline that can support practitioners into performing diagnosis of mitral valve diseases, surgical planning, and intraoperative procedures. To this end, we propose a totally automated and unsupervised mitral valve segmentation algorithm, based on a low-dimensional neural network matrix factorization of echocardiography videos. The method is evaluated in a collection of echocardiography videos of patients with a variety of mitral valve diseases and exceeds the state-of-the-art method in all the metrics considered.


Mitral valve segmentation Echocardiography Neural network matrix factorization 


  1. 1.
    Baumgartner, H., et al.: Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J. Am. Soc. Echocardiogr. 22(1), 1–23 (2009)CrossRefGoogle Scholar
  2. 2.
    Blake, A., Isard, M.: Active Contours: The Application of Techniques from Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in Motion. Springer, London (2012). Scholar
  3. 3.
    Burlina, P., et al.: Patient-specific modeling and analysis of the mitral valve using 3D-TEE. In: Navab, N., Jannin, P. (eds.) IPCAI 2010. LNCS, vol. 6135, pp. 135–146. Springer, Heidelberg (2010). Scholar
  4. 4.
    Dukler, Y., et al.: Automatic valve segmentation in cardiac ultrasound time series data. In: Medical Imaging 2018: Image Processing, vol. 10574, p. 105741Y. International Society for Optics and Photonics (2018)Google Scholar
  5. 5.
    Dziugaite, G.K., Roy, D.M.: Neural network matrix factorization. arXiv preprint arXiv:1511.06443 (2015)
  6. 6.
    Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). Scholar
  7. 7.
    Hayek, E., Gring, C.N., Griffin, B.P.: Mitral valve prolapse. Lancet 365(9458), 507–518 (2005)CrossRefGoogle Scholar
  8. 8.
    He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182. International World Wide Web Conferences Steering Committee (2017)Google Scholar
  9. 9.
    Isard, M., Blake, A.: Contour tracking by stochastic propagation of conditional density. In: Buxton, B., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064, pp. 343–356. Springer, Heidelberg (1996). Scholar
  10. 10.
    Mikic, I., Krucinski, S., Thomas, J.D.: Segmentation and tracking of mitral valve leaflets in echocardiographic sequences: active contours guided by optical flow estimates. In: Medical Imaging 1996: Image Processing, vol. 2710, pp. 311–321. International Society for Optics and Photonics (1996)Google Scholar
  11. 11.
    Mikic, I., Krucinski, S., Thomas, J.D.: Segmentation and tracking in echocardiographic sequences: active contours guided by optical flow estimates. IEEE Trans. Med. Imaging 17(2), 274–284 (1998)CrossRefGoogle Scholar
  12. 12.
    Schneider, R.J., Tenenholtz, N.A., Perrin, D.P., Marx, G.R., del Nido, P.J., Howe, R.D.: Patient-specific mitral leaflet segmentation from 4D ultrasound. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6893, pp. 520–527. Springer, Heidelberg (2011). Scholar
  13. 13.
    Shang, Y., Yang, X., Zhu, L., Deklerck, R., Nyssen, E.: Region competition based active contour for medical object extraction. Comput. Med. Imaging Graph. 32(2), 109–117 (2008)CrossRefGoogle Scholar
  14. 14.
    Siefert, A.W., et al.: Accuracy of a mitral valve segmentation method using J-splines for real-time 3D echocardiography data. Ann. Biomed. Eng. 41(6), 1258–1268 (2013)CrossRefGoogle Scholar
  15. 15.
    Zamorano, J., et al.: Real-time three-dimensional echocardiography for rheumatic mitral valve stenosis evaluation: an accurate and novel approach. J. Am. Coll. Cardiol. 43(11), 2091–2096 (2004)CrossRefGoogle Scholar
  16. 16.
    Zhou, X., Yang, C., Yu, W.: Automatic mitral leaflet tracking in echocardiography by outlier detection in the low-rank representation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 972–979. IEEE (2012)Google Scholar
  17. 17.
    Zhou, Z.H.: A brief introduction to weakly supervised learning. Natl. Sci. Rev. 5(1), 44–53 (2017)CrossRefGoogle Scholar
  18. 18.
    Zoghbi, W.A., et al.: Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and doppler echocardiography. J. Am. Soc. Echocardiogr. 16(7), 777–802 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luca Corinzia
    • 1
    Email author
  • Jesse Provost
    • 1
  • Alessandro Candreva
    • 2
  • Maurizio Tamarasso
    • 2
  • Francesco Maisano
    • 2
  • Joachim M. Buhmann
    • 1
  1. 1.Institute for Machine LearningETH ZurichZurichSwitzerland
  2. 2.Department of CardiologyUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations