Advertisement

Mining Compact Predictive Pattern Sets Using Classification Model

  • Matteo MantovaniEmail author
  • Carlo Combi
  • Milos Hauskrecht
Conference paper
  • 809 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11526)

Abstract

In this paper, we develop a new framework for mining predictive patterns that aims to describe compactly the condition (or class) of interest. Our framework relies on a classification model that considers and combines various predictive pattern candidates and selects only those that are important for improving the overall class prediction performance. We test our approach on data derived from MIMIC-III EHR database, focusing on patterns predictive of sepsis. We show that using our classification approach we can achieve a significant reduction in the number of extracted patterns compared to the state-of-the-art methods based on minimum predictive pattern mining approach, while preserving the overall classification accuracy of the model.

Notes

Acknowledgement

This work was supported by NIH grant R01-GM088224. The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

References

  1. 1.
    Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of SIGMOD (1993)Google Scholar
  2. 2.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of VLDB (1994)Google Scholar
  3. 3.
    Batal, I., Cooper, G., Hauskrecht, M.: A Bayesian scoring technique for mining predictive and non-spurious rules. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 260–276. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33486-3_17CrossRefGoogle Scholar
  4. 4.
    Batal, I., Cooper, G.F., Fradkin, D., Harrison, J., Moerchen, F., Hauskrecht, M.: An efficient pattern mining approach for event detection in multivariate temporal data. Knowl. Inf. Syst. 46(1), 115–150 (2016)CrossRefGoogle Scholar
  5. 5.
    Batal, I., Fradkin, D., Harrison, J., Moerchen, F., Hauskrecht, M.: Mining recent temporal patterns for event detection in multivariate time series data. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining (SIGKDD) (2012)Google Scholar
  6. 6.
    Batal, I., Hauskrecht, M.: Constructing classification features using minimal predictive patterns. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 869–878. ACM (2010)Google Scholar
  7. 7.
    Batal, I., Valizadegan, H., Cooper, G.F., Hauskrecht, M.: A temporal pattern mining approach for classifying electronic health record data. ACM Trans. Intell. Syst. Technol. (ACM TIST) 4(4), 63:1–63:22 (2012). Spec. Issue Health InformGoogle Scholar
  8. 8.
    Bellazzi, R., Zupan, B.: Predictive data mining in clinical medicine: current issues and guidelines. Int. J. Med. Inform. 77(2), 81–97 (2008)CrossRefGoogle Scholar
  9. 9.
    Bone, R.C., et al.: Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 101(6), 1644–1655 (1992)CrossRefGoogle Scholar
  10. 10.
    Brett, S.: Science review: the use of proton pump inhibitors for gastric acid suppression in critical illness. Crit. Care 9(1), 45 (2004)CrossRefGoogle Scholar
  11. 11.
    Dellinger, R.P., et al.: Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 39(2), 165–228 (2013)CrossRefGoogle Scholar
  12. 12.
    Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Geng, L., Hamilton, H.J.: Interestingness measures for data mining: a survey. ACM Comput. Surv. (CSUR) 38(3), 9 (2006)CrossRefGoogle Scholar
  14. 14.
    Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier, New York (2011)zbMATHGoogle Scholar
  15. 15.
    Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3 (2016)Google Scholar
  16. 16.
    Jovanoski, V., Lavrač, N.: Classification rule learning with APRIORI-C. In: Brazdil, P., Jorge, A. (eds.) EPIA 2001. LNCS (LNAI), vol. 2258, pp. 44–51. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45329-6_8CrossRefGoogle Scholar
  17. 17.
    Koller, D., Sahami, M.: Toward optimal feature selection. Technical report, Stanford InfoLab (1996)Google Scholar
  18. 18.
    Lavrač, N.: Selected techniques for data mining in medicine. Artif. Intell. Med. 16(1), 3–23 (1999)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Matteo Mantovani
    • 1
    Email author
  • Carlo Combi
    • 1
  • Milos Hauskrecht
    • 2
  1. 1.Department of Computer ScienceUniversity of VeronaVeronaItaly
  2. 2.Department of Computer ScienceUniversity of PittsburghPittsburghUSA

Personalised recommendations