Advertisement

Mechanisms Involved in Photosynthetic Apparatus Protection Against Lead Toxicity

  • Krzysztof TokarzEmail author
  • Barbara Piwowarczyk
  • Wojciech Makowski
Chapter
Part of the Radionuclides and Heavy Metals in the Environment book series (RHME)

Abstract

Lead is one of the most toxic trace elements influencing plant growth and development processes including photosynthesis. Although lead is characterized by low mobility, it can get into the plant and after destroying physical barrier (Casparian strip), enters the xylem and translocates to the aerial parts of a plant affecting photosynthetic apparatus in both indirect and direct ways.

Directly Pb impacts on the number and ultrastructure of chloroplasts, the photosynthetic pigments synthesis, activity and efficiency of Oxygen Evolving Complex, Photosystem II Reaction Center, membrane transporters, Thioredoxin System and the Calvin-Benson Cycle effectiveness as well as synthesis and distribution of carbohydrates. Indirectly, Pb impairs plants’ redox state, leading to ROS generation, wherein the photosynthetic apparatus might be source as well as objective of ROS action. In order to survive in such conditions, plants have developed a number of mechanisms protecting their photosynthetic apparatus against toxic effects of Pb.

Keywords

Lead Photosynthetic apparatus Photosynthesis Photosystem II Electron transport Chloroplast ROS 

References

  1. Arena C, Figlioli F, Sorrentino MC, Izzo LG, Capozzi F, Giordano S, Spagnuolo V (2017) Ultrastructural, protein and photosynthetic alterations induced by Pb and Cd in Cynara cardunculus L., and its potential for phytoremediation. Ecotox Environ Saf 145:83–89CrossRefGoogle Scholar
  2. Ashraf U, Tang X (2017) Yield and quality responses, plant metabolism and metal distribution pattern in aromatic rice under lead (Pb) toxicity. Chemosphere 176:141–155CrossRefGoogle Scholar
  3. Atafar Z, Mesdaghinia A, Nouri J, Homaee M, Yunesian M, Ahmadimoghaddam M, Mahvi AH (2010) Effect of fertilizer application on soil heavy metal concentration. Environ Monit Assess 160:83–89CrossRefGoogle Scholar
  4. Balsera M, Uberegui E, Schuermann P, Buchanan BB (2014) Evolutionary development of redox regulation in chloroplasts. Antioxid Redox Sign 21:1327–1355CrossRefGoogle Scholar
  5. Bechaieb R, Akacha AB, Gérard H (2016) Quantum chemistry insight into Mg-substitution in chlorophyll by toxic heavy metals: Cd, Hg and Pb. Chem Phys Lett 663:27–32CrossRefGoogle Scholar
  6. Bölter B, Soll J, Schwenkert S (2015) Redox meets protein trafficking. BBA-Bioenergetics 1847:949–956CrossRefGoogle Scholar
  7. Buchanan BB (2016) The path to thioredoxin and redox regulation in chloroplasts. Annu Rev Plant Biol 67:1–24CrossRefGoogle Scholar
  8. Cenkci S, Ciğerci İH, Yıldız M, Özay C, Bozdağ A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67:467–473CrossRefGoogle Scholar
  9. Chen Q, Zhang X, Liu Y, Wei J, Shen W, Shen Z, Cui J (2017) Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regul 81:253–264Google Scholar
  10. Cheng H, Hu Y (2010) Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review. Environ Pollut 158:1134–1146CrossRefGoogle Scholar
  11. Dogan M, Karatas M, Aasim M (2018) Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.: a laboratory study. Ecotox Environ Safe 148:431–440CrossRefGoogle Scholar
  12. Doncheva S, Ananieva K, Stefanov D, Vassilev A, Gesheva E, Dinev N (2018) Photosynthetic electron transport and antioxidant defense capacity of sunflower plants under combined heavy metal stress. Genet Plant Physiol 8:3–23Google Scholar
  13. Dresler S, Wójciak-Kosior M, Sowa I, Stanisławski G, Bany I, Wójcik M (2017) Effect of short-term Zn/Pb or long-term multi-metal stress on physiological and morphological parameters of metallicolous and nonmetallicolous Echium vulgare L. populations. Plant Physiol Biochem 115:380–389CrossRefGoogle Scholar
  14. EEA (2016) Air quality in Europe-2016 report, Report No 28/2016, European Environment Agency, Luxembourg: Publications Office of the European Union, http://powietrze.gios.gov.pl
  15. Figlioli F, Sorrentino MC, Memoli V, Arena C, Maisto G, Giordano S, Capozzi F, Spagnuolo V (2019) Overall plant responses to Cd and Pb metal stress in maize: growth pattern, ultrastructure, and photosynthetic activity. Environ Sci Pollut Res 26:1781–1790CrossRefGoogle Scholar
  16. Geigenberger P, Fernie AR (2014) Metabolic control of redox and redox control of metabolism in plants. Antioxid Redox Sign 21:1389–1421CrossRefGoogle Scholar
  17. Ghori NH, Ghori T, Hayat MQ, Imadi SR, Gul A, Altay V, Ozturk M (2019) Heavy metal stress and responses in plants. Int J Environ Sci Te 16:1807–1828CrossRefGoogle Scholar
  18. Giuliano G (2014) Plant carotenoids: genomics meets multi-gene engineering. Curr Opin Plant Biol 19:111–117CrossRefGoogle Scholar
  19. Gupta DK, Nicoloso FT, Schetinger MRC, Rossato LV, Pereira LB, Castro GY, Srivastava S, Tripathi RD (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172:479–484CrossRefGoogle Scholar
  20. Hampp R, Zeigler H, Zeigler I (1973) Influence of lead ions on the activity of enzymes of reductive pentose phosphate pathway. Biochem Physiol Pflanz 164:588–495CrossRefGoogle Scholar
  21. Harpaz-Saad S, Azoulay T, Arazi T, Ben-Yaakov E, Mett A, Shiboleth YM, Hörtensteiner S, Gidoni D, Gal-On A, Goldschmidt EE, Eyal Y (2007) Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell 19:1007–1022CrossRefGoogle Scholar
  22. Hattab S, Hattab S, Flores-Casseres ML, Boussetta H, Doumas P, Hernandez LE, Banni M (2016) Characterisation of lead-induced stress molecular biomarkers in Medicago sativa plants. Environ Exp Bot 123:1–12CrossRefGoogle Scholar
  23. Hu JZ, Shi GX, Xu QS, Wang X, Yuan QH, Du KH (2007) Effects of Pb2+ on the active oxygen-scavenging enzyme activities and ultrastructure in Potamogeton crispus leaves. Russ J Plant Physiol 54:414–419CrossRefGoogle Scholar
  24. Huskey DA, Curlango-Rivera G, Root RA, Wen F, Amistadi MK, Chorover J, Hawes MC (2018) Trapping of lead (Pb) by corn and pea root border cells. Plant Soil 430:205–217CrossRefGoogle Scholar
  25. Janik E, Szczepaniuk J, Maksymiec W (2013) Organization and functionality of chlorophyll-protein complexes in thylakoid membranes isolated from Pb-treated Secale cereale. J Photoch Photobio B 125:98–104CrossRefGoogle Scholar
  26. Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Łukasik I, Goltsev V, Ladle RJ (2016) Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol Plant 38:102CrossRefGoogle Scholar
  27. Kang ZH, Wang GX (2016) Redox regulation in the thylakoid lumen. J Plant Physiol 192:28–37CrossRefGoogle Scholar
  28. Kaviani E, Niazi A, Heydarian Z, Moghadam A, Ghasemi-Fasaei R, Abdollahzadeh T (2017) Phytoremediation of Pb-contaminated soil by Salicornia iranica: key physiological and molecular mechanisms involved in Pb detoxification. Clean–Soil Air Water 45:1500964CrossRefGoogle Scholar
  29. Khan MM, Islam E, Irem S, Akhtar K, Ashraf MY, Iqbal J, Liu D (2018) Pb-induced phytotoxicity in para grass (Brachiaria mutica) and Castorbean (Ricinus communis L.): antioxidant and ultrastructural studies. Chemosphere 200:257–265CrossRefGoogle Scholar
  30. Krzesłowska M, Rabęda I, Basińska A, Lewandowski M, Mellerowicz EJ, Napieralska A, Samardakiewicz S, Woźny A (2016) Pectinous cell wall thickenings formation–a common defense strategy of plants to cope with Pb. Environ Pollut 214:354–361CrossRefGoogle Scholar
  31. Kumar A, Prasad MNV (2018) Plant-lead interactions: transport, toxicity, tolerance, and detoxification mechanisms. Ecotoxicol Environ Saf 166:401–418CrossRefGoogle Scholar
  32. Liu D, Li TQ, Jin XF, Yang XE, Islam E, Mahmood Q (2008) Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. J Integr Plant Biol 50:129–140CrossRefGoogle Scholar
  33. Motohashi K, Hisabori T (2010) CcdA is a thylakoid membrane protein required for the transfer of reducing equivalents from stroma to thylakoid lumen in the higher plant chloroplast. Antioxid Redox Sign 13:1169–1176CrossRefGoogle Scholar
  34. Nikkanen L, Rintamäki E (2014) Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions. Philos T Roy Soc B 69:20130224CrossRefGoogle Scholar
  35. Nikkanen L, Toivola J, Diaz MG, Rintamäki E (2017) Chloroplast thioredoxin systems: prospects for improving photosynthesis. Philos T Roy Soc B 372:20160474CrossRefGoogle Scholar
  36. Piotrowska A, Bajguz A, Godlewska-Żyłkiewicz B, Czerpak R, Kamińska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot 66:507–513CrossRefGoogle Scholar
  37. Piwowarczyk B, Tokarz K, Muszyńska E, Makowski W, Jędrzejczyk R, Gajewski Z, Hanus-Fajerska E (2018) The acclimatization strategies of kidney vetch (Anthyllis vulneraria L.) to Pb toxicity. Environ Sci Pollut Res 25:19739–19752CrossRefGoogle Scholar
  38. Prasad DDK, Prasad ARK (1987) Effect of lead and mercury on chlorophyll synthesis in mung bean seedlings. Phytochemistry 26:881–883CrossRefGoogle Scholar
  39. Qufei L, Fashui H (2009) Effects of Pb2+ on the structure and function of photosystem II of Spirodela polyrrhiza. Biol Trace Elem Res 129:251CrossRefGoogle Scholar
  40. Rashid A, Camm EL, Ekramoddoullah AK (1994) Molecular mechanism of action of Pb2+ and Zn2+ on water oxidizing complex of photosystem II. FEBS Lett 350:296–298CrossRefGoogle Scholar
  41. Reis GSM, de Almeida AAF, de Almeida NM, de Castro AV, Mangabeira PAO, Pirovani CP (2015) Molecular, biochemical and ultrastructural changes induced by Pb toxicity in seedlings of Theobroma cacao L. PLoS One 10:e0129696CrossRefGoogle Scholar
  42. Romanowska E, Wróblewska B, Drożak A, Zienkiewicz M, Siedlecka M (2008) Effect of Pb ions on superoxide dismutase and catalase activities in leaves of pea plants grown in high and low irradiance. Biol Planta 52:80CrossRefGoogle Scholar
  43. Romanowska E, Wasilewska W, Fristedt R, Vener AV, Zienkiewicz M (2012) Phosphorylation of PSII proteins in maize thylakoids in the presence of Pb ions. J Plant Physiol 169:345–352CrossRefGoogle Scholar
  44. Rouhier N, Cerveau D, Couturier J, Reichheld JP, Rey P (2015) Involvement of thiol-based mechanisms in plant development. BBA-Gen Subj 1850:1479–1496CrossRefGoogle Scholar
  45. Ruban AV, Johnson MP (2009) Dynamics of higher plant photosystem cross-section associated with state transitions. Photosynth Res 99:173–183CrossRefGoogle Scholar
  46. Schultz C, Soll J, Fiedler E, Schultze-Siebert D (1985) Synthesis of prenylquinones in chloroplasts. Physiol Planta 64:123–129CrossRefGoogle Scholar
  47. Sersen F, Kralova K, Pesko M, Cigan M (2014) Effect of Pb2+ ions on photosynthetic apparatus. Gen Physiol Biophys 33:131–136CrossRefGoogle Scholar
  48. Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E (2014) Heavy metal induced reactive oxygen species: phytotoxicity and physicochemical changes in plants. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 232. Springer, Cham, pp 114–131Google Scholar
  49. Shahid M, Dumat C, Pourrut B, Abbas G, Shahid N, Pinelli E (2015) Role of metal speciation in lead-induced oxidative stress to Vicia faba roots. Russ J Plant Physiol 62:448–454CrossRefGoogle Scholar
  50. Shahid M, Dumat C, Khalid S, Schreck E, Xiong T, Niazi NK (2017) Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake. J Hazard Mater 325:36–58CrossRefGoogle Scholar
  51. Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52CrossRefGoogle Scholar
  52. Shen J, Song L, Müller K, Hu Y, Song Y, Yu W, Wang H, Wu J (2016) Magnesium alleviates adverse effects of lead on growth, photosynthesis, and ultrastructural alterations of Torreya grandis seedlings. Front Plant Sci 7:1819Google Scholar
  53. Shi X, Wang S, Wang D, Sun H, Chen Y, Liu J, Jiang Z (2019) Woody species Rhus chinensis Mill. seedlings tolerance to Pb: physiological and biochemical response. J Environ Sci 78:63–73CrossRefGoogle Scholar
  54. Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032CrossRefGoogle Scholar
  55. Slootweg J, Hettelingh J, Posch M (2010) Critical loads of heavy metals and their exceedances. In: Slootweg J, Posch M, Hettelingh JP (eds) Progress in the modelling of critical thresholds and dynamic modelling, including impacts on vegetation in Europe, CCE Status Report No 680359001. Coordination Centre for Effects, Bilthoven, Netherlands, pp 91–100Google Scholar
  56. Sobotik M, Ivanov VB, Obroucheva NV, Seregin IV, Martin ML, Antipova OV, Bergmann H (1998) Barrier role of root system in lead-exposed plants. Angew Bot 72:144–147Google Scholar
  57. Stefanov D, Ananieva K, Gesheva E, Dinev N, Nikova I, Vasilev A, Doncheva S (2014) PTOX-dependent electron flow is involved in photosynthetic electron transport protection against heavy metal toxicity in sunflower leaves. Comp Rend Acad Sci 67:931–936Google Scholar
  58. Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L (2018) Carotenoid metabolism in plants: the role of plastids. Mol Plant 11:58–74CrossRefGoogle Scholar
  59. Tyystjärvi E (2008) Photoinhibition of photosystem II and photodamage of the oxygen evolving manganese cluster. Coord Chem Rev 252:361–376CrossRefGoogle Scholar
  60. Wasilewska W, Drożak A, Bacławska I, Kąkol K, Romanowska E (2015) Lead induced changes in phosphorylation of PSII proteins in low light grown pea plants. Biometals 28:151–162CrossRefGoogle Scholar
  61. Wood WH, MacGregor-Chatwin C, Barnett SF, Mayneord GE, Huang X, Hobbs JK, Hunter CN, Johnson MP (2018) Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer. Nat Plant 4:116–127CrossRefGoogle Scholar
  62. Xiong ZT, Zhao F, Li MJ (2006) Lead toxicity in Brassica pekinensis Rupr.: effect on nitrate assimilation and growth. Environ Toxicol 21:147–153CrossRefGoogle Scholar
  63. Zhong B, Chen J, Shafi M, Guo J, Wang Y, Wu J, Ye Z, He L, Liu D (2017) Effect of lead (Pb) on antioxidation system and accumulation ability of Moso bamboo (Phyllostachys pubescens). Ecotox Environ Safe 138:71–77CrossRefGoogle Scholar
  64. Zhou C, Huang M, Li Y, Luo J, Cai L (2016) Changes in subcellular distribution and antioxidant compounds involved in Pb accumulation and detoxification in Neyraudia reynaudiana. Environ Sci Pollut Res 23:21794–21804CrossRefGoogle Scholar
  65. Zhou J, Jiang Z, Ma J, Yang L, Wei Y (2017) The effects of lead stress on photosynthetic function and chloroplast ultrastructure of Robinia pseudoacacia seedlings. Environ Sci Pollut Res 24:10718–10726CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Krzysztof Tokarz
    • 1
    Email author
  • Barbara Piwowarczyk
    • 1
  • Wojciech Makowski
    • 1
  1. 1.University of Agriculture in Krakow, Institute of Plant Biology and BiotechnologyKrakówPoland

Personalised recommendations