Advertisement

Lead Toxicity in Plants: A Review

  • Anindita Mitra
  • Soumya Chatterjee
  • Anna V. Voronina
  • Clemens Walther
  • Dharmendra K. GuptaEmail author
Chapter
Part of the Radionuclides and Heavy Metals in the Environment book series (RHME)

Abstract

The harmful effects of lead (Pb) contamination are well known. Accumulation of Pb in the soil due to natural and anthropogenic sources causes substantial problems to soil biota and the milieu, which is of immense concern to the scientific community. Both stable and isotopic Pb, which is naturally present in the environment, can be accumulated within vegetation also disturbing plant growth and food safety. Many plants have developed detoxification mechanisms to accumulate Pb within their body without any harmful effects. Phytoremediation practices may be the better option for amelioration of Pb contaminated soil. This chapter deals with the recent advancements in the field of lead contamination and remediation through bioremediation for safe use of lead-contaminated areas.

Keywords

Plants Remediation Phytoremediation Genotoxicity 

Notes

Acknowledgements

S.C. sincerely acknowledges and thanks Director, DRL (DRDO), Assam, India.

References

  1. Alcántara E, Romera FJ, Cañete M, De la Guardia MD (1994) Effects of heavy metals on both induction and function of root Fe (lll) reductase in Fe-deficient cucumber (Cucumis sativus L.) plants. J Exp Bot 45:1893–1898CrossRefGoogle Scholar
  2. Amari T, Ghnaya T, Abdelly C (2017) Nickel, cadmium and lead phytotoxicity and potential of halophytic plants in heavy metal extraction. S Afr J Bot 111:99–110CrossRefGoogle Scholar
  3. Amundson R, Berhe AA, Hopmans JW, Olson C, Sztein AE, Sparks DL (2015) Soil and human security in the 21st century. Science 348:1261071CrossRefGoogle Scholar
  4. Anjum SA, Ashraf U, Khan I, Saleem MF, Wang LC (2016) Chromium toxicity induced alterations in growth, photosynthesis, gas exchange attributes and yield formation in maize. Pak J Agricult Sci 1:53Google Scholar
  5. Antosiewicz D, Wierzbicka M (1999) Localization of lead in Allium cepa L. cells by electron microscopy. J Microsc 195:139–146CrossRefGoogle Scholar
  6. Arias JA, Peralta-Videa JR, Ellzey JT, Ren M, Viveros MN, Gardea-Torresdey JL (2010) Effects of Glomus deserticola inoculation on Prosopis: enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environ Exp Bot 68:139–148CrossRefGoogle Scholar
  7. Arshad M, Silvestre J, Pinelli E, Kallerhoff J, Kaemmerer M, Tarigo A, Shahid M, Guiresse M, Pradère P, Dumat C (2008) A field study of lead phytoextraction by various scented Pelargonium cultivars. Chemosphere 71:2187–2192CrossRefGoogle Scholar
  8. Arya SK, Basu A, Mukherjee A (2013) Lead induced genotoxicity and cytotoxicity in root cells of Allium cepa and Vicia faba. Nucleus 56:183–189CrossRefGoogle Scholar
  9. Ashraf U, Kanu AS, Deng Q, Mo Z, Pan S, Tian H, Tang X (2017) Lead (Pb) toxicity; physio-biochemical mechanisms, grain yield, quality, and Pb distribution proportions in scented rice. Front Plant Sci 8:259CrossRefGoogle Scholar
  10. Beckman KB, Ames BN (1997) Oxidative decay of DNA. J Biol Chem 32:19,633–19,636CrossRefGoogle Scholar
  11. Bhatti SS, Kumar V, Sambyal V, Singh J, Nagpal AK (2018) Comparative analysis of tissue compartmentalized heavy metal uptake by common forage crop: a field experiment. Catena 160:185–193CrossRefGoogle Scholar
  12. Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865CrossRefGoogle Scholar
  13. Buscaroli A (2017) An overview of indexes to evaluate terrestrial plants for phytoremediation purposes. Ecol Indic 82:367–380CrossRefGoogle Scholar
  14. Cenkci S, Cigerci IH, Yildiz M, Özay C, Bozdag A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67:467–473CrossRefGoogle Scholar
  15. Chakravarty B, Srivastava S (1992) Toxicity of some heavy metals in vivo and in vitro in Helianthus annuus. Mutat Res 283:287–294CrossRefGoogle Scholar
  16. Chandra R, Kumar V, Tripathi S, Sharma P (2018) Heavy metal phytoextraction potential of native weeds and grasses from endocrine-disrupting chemicals rich complex distillery sludge and their histological observations during in-situ phytoremediation. Ecol Eng 111:143–156CrossRefGoogle Scholar
  17. Chatterjee C, Dube BK, Sinha P, Srivastava P (2004) Detrimental effects of lead phytotoxicity on growth, yield, and metabolism of rice. Commun Soil Sci Plant Anal 35:255–265CrossRefGoogle Scholar
  18. Chen Q, Zhang X, Liu Y, Wei J, Shen W, Shen Z, Cui J (2017) Hemin-mediated alleviation of zinc, lead and chromium toxicity is associated with elevated photosynthesis, antioxidative capacity; suppressed metal uptake and oxidative stress in rice seedlings. Plant Growth Regul 81:253–264CrossRefGoogle Scholar
  19. Davies BE (1995) Lead and other heavy metals in urban areas and consequences for the health of their inhabitants. In: Majumdar SK, Miller EW, Brenner FJ (eds) Environmental contaminants, ecosystems and human health. The Pennsylvania Academy of Science, Easton, PA, pp 287–307Google Scholar
  20. Dey SK, Dey J, Patra S, Pothal D (2007) Changes in the antioxidative enzyme activities and lipid peroxidation in wheat seedlings exposed to cadmium and lead stress. Braz J Plant Physiol 19:53–60CrossRefGoogle Scholar
  21. Dhir H, Roy AK, Sharma A (1993) Relative efficiency of Phyllantus emblica fruit extract and ascorbic acid in modifying lead and aluminium-induced sister chromatid exchanges in mouse bone marrow. Environ Mol Mutagen 21:229–236CrossRefGoogle Scholar
  22. Dias MC, Mariz-Ponte N, Santos C (2019) Lead induces oxidative stress in Pisum sativum plants and changes the levels of phytohormones with antioxidant role. Plant Physiol Biochem 137:121–129CrossRefGoogle Scholar
  23. Dogan M, Karatas M, Aasim M (2018) Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.: a laboratory study. Ecotoxicol Environ Saf 148:431–440CrossRefGoogle Scholar
  24. Elzbieta W, Miroslawa C (2005) Lead-induced histological and ultrastructural changes in the leaves of soybean (Glycine max (L.) Merr.). Soil Sci Plant Nutr 51:203–212CrossRefGoogle Scholar
  25. Epelde L, Hernández-Allica J, Becerril JM, Blanco F, Garbisu C (2008) Effects of chelates on plants and soil microbial community: comparison of EDTA and EDDS for lead phytoextraction. Sci Total Environ 401:21–28CrossRefGoogle Scholar
  26. Fernandez S, Poschenrieder C, Marcenò C, Gallego JR, Jiménez-Gámez D, Bueno A, Afif E (2016) Phytoremediation capability of native plant species living on Pb-Zn and Hg-As mining wastes in the Cantabrian range, north of Spain. J Geochem Explor 174:10–20CrossRefGoogle Scholar
  27. Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contam 7:415–432CrossRefGoogle Scholar
  28. Gichner T, Znidar I, Száková J (2008) Evaluation of DNA damage and mutagenicity induced by lead in tobacco plants. Mutat Res 652:186–190CrossRefGoogle Scholar
  29. Godzik B (1993) Heavy metals content from zinc dumps and reference areas. Pol Bot Stud 5:113–132Google Scholar
  30. Gopal R, Rizvi AH (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70:1539–1544CrossRefGoogle Scholar
  31. Gratao PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494CrossRefGoogle Scholar
  32. Grover P, Rekhadevi P, Danadevi K, Vuyyuri S, Mahboob M, Rahman M (2010) Genotoxicity evaluation in workers occupationally exposed to lead. Int J Hyg Environ Health 213:99–106CrossRefGoogle Scholar
  33. Gupta DK, Li LL (2013) Lead detoxification system in plants. In: Kretsinger RH, Uversky VN, Permyakov EA (eds) Encyclopedia of metalloproteins. Springer, Heidelberg, pp 1173–1179CrossRefGoogle Scholar
  34. Gupta DK, Nicoloso F, Schetinger M, Rossato L, Pereira L, Castro G, Srivastava S, Tripathi RD (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172:479–484CrossRefGoogle Scholar
  35. Gupta DK, Huang HG, Yang XE, Razafindrabe BHN, Inouhe M (2010) The detoxification of lead in Sedum alfredii H. is not related with phytochelatins but the glutathione. J Hazard Mater 177:437–444CrossRefGoogle Scholar
  36. Gupta DK, Nicoloso FT, Schetinger MRC, Rossato LV, Huang HG, Srivastava S, Yang XE (2011) Lead induced responses of Pfaffia glomerata, an economically important Brazilian medicinal plant, under in vitro culture conditions. Bull Environ Contam Toxicol 86:272–277CrossRefGoogle Scholar
  37. Gupta DK, Huang HG, Corpas FJ (2013a) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20:2150–2161CrossRefGoogle Scholar
  38. Gupta DK, Corpas FJ, Palma JM (2013b) Heavy metal stress in plants. Springer, HeidelbergCrossRefGoogle Scholar
  39. Gupta DK, Huang HG, Nicoloso FT, Schetinger MRC, Farias JG, Li TQ, Razafindrabe BHN, Aryal N, Inouhe M (2013c) Effect of Hg, As and Pb on biomass production, photosynthetic rate, nutrients uptake and phytochelatin induction in Pfaffia glomerata. Ecotoxicology 22:1403–1412CrossRefGoogle Scholar
  40. Hartwig A, Schlepegrell R, Beyersmann D (1990) Indirect mechanism of lead induced genotoxicity in cultured mammalian cells. Mutat Res 241:75–82CrossRefGoogle Scholar
  41. Hu J, Shi G, Xu Q, Wang X, Yuan Q, Du K (2007) Effects of Pb2+ on the active oxygenscavenging enzyme activities and ultrastructure in Potamogeton crispus leaves. Russ J Plant Physl 54:414–419CrossRefGoogle Scholar
  42. Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84CrossRefGoogle Scholar
  43. Huang JW, Grunes DL, Kochian LV (1994) Voltage dependent Ca2+ influx into right-side-out plasmamembrane vesicles isolated from wheat roots: characteristic of a putative Ca2+ channel. Proc Natl Acad Sci U S A 91:3473–3477CrossRefGoogle Scholar
  44. Inoue H, Fukuoka D, Tatai Y, Kamachi H, Hayatsu M, Ono M, Suzuki S (2013) Properties of lead deposits in cell walls of radish (Raphanus sativus) roots. J Plant Res 126:51–61CrossRefGoogle Scholar
  45. Islam E, Yang X, Li T, Liu D, Jin X, Meng F (2007) Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 147:806–816CrossRefGoogle Scholar
  46. Jayasri MA, Suthindhiran K (2017) Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation. Appl Water Sci 7:1247–1253CrossRefGoogle Scholar
  47. Jiang W, Liu D (2010) Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biol 10:40CrossRefGoogle Scholar
  48. Jiang L, Wang W, Chen Z, Gao Q, Xu Q, Cao H (2017) A role for APX1 gene in lead tolerance in Arabidopsis thaliana. Plant Sci 256:94–102CrossRefGoogle Scholar
  49. Jiang Y, Jiang S, Li Z, Yan X, Qin Z, Huang R (2019) Field scale remediation of Cd and Pb contaminated paddy soil using three mulberry (Morus alba L.) cultivars. Ecol Eng 129:38–44CrossRefGoogle Scholar
  50. Jusselme MD, Poly F, Miambi E, Mora P, Blouin M, Pando A, Rouland-Lefèvre C (2012) Effect of earthworms on plant Lantana camara Pb-uptake and on bacterial communities in root-adhering soil. Sci Total Environ 416:200–207CrossRefGoogle Scholar
  51. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton, FLGoogle Scholar
  52. Khan I, Iqbal M, Ashraf MY, Ashraf MA, Ali S (2016) Organic chelants-mediated enhanced lead (Pb) uptake and accumulation is associated with higher activity of enzymatic antioxidants in spinach (Spinacea oleracea L.). J Hazard Mater 317:352–361CrossRefGoogle Scholar
  53. Kiran BR, Prasad MNV (2017) Responses of Ricinus communis L. (castor bean, phytoremediation crop) seedlings to lead (Pb) toxicity in hydroponics. Selcuk J Agri Food Sci 31:73–80Google Scholar
  54. Kopittke PM, Asher CJ, Kopittke RA, Menzies NW (2007) Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environ Pollut 150:280–287CrossRefGoogle Scholar
  55. Kopittke PM, Asher CJ, Blamey FP, Auchterlonie GJ, Guo YN, Menzies NW (2008a) Localization and chemical speciation of Pb in roots of signal grass (Brachiaria decumbens) and Rhodes grass (Chloris gayana). Environ Sci Technol 42:4595–4599CrossRefGoogle Scholar
  56. Kopittke PM, Asher CJ, Menzies NW (2008b) Prediction of Pb speciation in concentrated and dilute nutrient solutions. Environ Pollut 153:548–554CrossRefGoogle Scholar
  57. Kumar A, Majeti NVP (2014) Proteomic responses to lead-induced oxidative stress in Talinum triangulare Jacq. (Willd.) roots: identification of key biomarkers related to glutathione metabolisms. Environ Sci Pollut Res 21:8750–8764CrossRefGoogle Scholar
  58. Kumar PN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238CrossRefGoogle Scholar
  59. Kumar A, Prasad MN, Sytar O (2012) Lead toxicity, defense strategies and associated indicative biomarkers in Talinum triangul are grown hydroponically. Chemosphere 89:1056–1065CrossRefGoogle Scholar
  60. Kumar A, Pal L, Agrawal V (2017) Glutathione and citric acid modulates lead- and arsenic-induced phytotoxicity and genotoxicity responses in two cultivars of Solanum lycopersicum L. Acta Physiol Planta 39:151CrossRefGoogle Scholar
  61. Kushwaha A, Hans N, Kumar S, Rani R (2018) A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotox Environ Safet 147:1035–1045CrossRefGoogle Scholar
  62. Lane SD, Martin ES (1977) A histochemical investigation of lead uptake in Raphanus sativus. New Phytol 79:281–286CrossRefGoogle Scholar
  63. Leal-Alvarado DA, Espadas-Gil F, Sáenz-Carbonell L, Talavera-May C, Santamaría JM (2016) Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima Baker by affecting the cell membrane and inducing stomatal closure. Aquat Toxicol 171:37–47CrossRefGoogle Scholar
  64. Lee M, Lee K, Lee J, Noh EW, Lee Y (2005) AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol 138:827–836CrossRefGoogle Scholar
  65. Leyval C, Berthelin J (1991) Weathering of a mica by roots and rhizospheric microorganisms of pine. Soil Sci Soc Am J 55:1009–1016CrossRefGoogle Scholar
  66. Liu D, Li T, Jin X, Yang X, Islam E, Mahmood Q (2008) Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. J Integr Plant Biol 50:129–140CrossRefGoogle Scholar
  67. López-Orenes A, Dias MC, Ferrer MÁ, Calderón A, Moutinho-Pereira J, Correia C, Santos C (2018) Different mechanisms of the metalliferous Zygophyllum fabago shoots and roots to cope with Pb toxicity. Environ Sci Pollut Res 25:1319–1330CrossRefGoogle Scholar
  68. Lovering TG (1969) The distribution of minor elements in samples of biotite from igneous rocks-basic data. US Geological SurveyGoogle Scholar
  69. Ma Y, Egodawatta P, McGree J, Liu A, Goonetilleke A (2016) Human health risk assessment of heavy metals in urban storm water. Sci Total Environ 557:764–772CrossRefGoogle Scholar
  70. Malar S, Manikandan R, Favas PJC, Vikram Sahi S, Venkatachalam P (2014) Effect of lead on phytotoxicity, growth, biochemical alterations and its role on genomic template stability in Sesbania grandiflora: a potential plant for phytoremediation. Ecotoxicol Environ Saf 108:249–257CrossRefGoogle Scholar
  71. Malea P, Adamakis ID, Kevrekidis T (2014) Effects of lead uptake on microtubule cytoskeleton organization and cell viability in the seagrass Cymodocea nodosa. Ecotoxicol Environ Saf 104:175–181CrossRefGoogle Scholar
  72. Malecka A, Jarmuszkiewicz W, Tomaszewska B (2001) Antioxidative defense to lead stress in subcellular compartments of pea root cells. Acta Bioquim Polon 48:687–698Google Scholar
  73. Małecka A, Piechalak A, Morkunas I, Tomaszewska B (2008) Accumulation of lead in root cells of Pisum sativum. Acta Physiol Plant 30:629–637CrossRefGoogle Scholar
  74. Małkowski E, Kita A, Galas W, Karcz W, Kuperberg JM (2002) Lead distribution in corn seedlings (Zea mays L.) and its effect on growth and the concentrations of potassium and calcium. Plant Growth Regul 37:69–76CrossRefGoogle Scholar
  75. Martínez-Macías María I, Qian W, Miki D, Pontes O, Liu Y, Tang K, Liu R, Morales-Ruiz T, Ariza R, Roldán-Arjona T, Zhu JK (2012) A DNA 3′ phosphatase functions in active DNA demethylation in Arabidopsis. Mol Cell 45:357–370CrossRefGoogle Scholar
  76. Meitei MD, Kumar A, Prasad MN, Malec P, Waloszek A, Maleva M, Strzałka K (2014) Photosynthetic pigments and pigment-protein complexes of aquatic plants under heavy metal stress. Photosynthetic pigments: chemical structure, biological function and ecology. Russian Academy of Sciences, St. Petersburg, Nauka, Russia, pp 314–329Google Scholar
  77. Mench M, Morel JL, Guckert A (1987) Metal binding properties of high molecular weight soluble exudates from maize (Zea mays L.) roots. Biol Fertil Soils 3:165–169CrossRefGoogle Scholar
  78. Mesjasz-Przybyłowicz JO, Nakonieczny MI, Migula PA, Augustyniak MA, Tarnawska MO, Reimold WU, Koeberl CH, Przybyłowicz WO, Głowacka EL (2004) Uptake of cadmium lead, nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biol Cracov Bot 46:75–85Google Scholar
  79. Michalak E, Wierzbicka M (1998) Differences in lead tolerance between Allium cepa plants developing from seeds and bulbs. Plant and Soil 199:251–260CrossRefGoogle Scholar
  80. Miller RJ, Koeppe DE (1971) Accumulation and physiological effects of lead in corn. In: Proceedings of University of Missouri, vol 4, Columbia, pp 186–193Google Scholar
  81. Mishra M, Mishra PK, Kumar U, Prakash V (2009) NaCl phytotoxicity induces oxidative stress and response of antioxidant systems in Cicer arietinum L. cv. Abrodhi. Bot Res Inter 2:74–82Google Scholar
  82. Mueller MJ (2004) Archetype signals in plants: the phytoprostanes. Curr Opin Plant Biol 7:441–448CrossRefGoogle Scholar
  83. Muhammad D, Chen F, Zhao J, Zhang G, Wu F (2009) Comparison of EDTA-and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia. Int J Phytoremediation 11:558–574CrossRefGoogle Scholar
  84. Olguín EJ, Sánchez-Galván G (2012) Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. New Biotechnol 30:3–8CrossRefGoogle Scholar
  85. Orrono DI, Schindler V, Lavado RS (2012) Heavy metal availability in Pelargonium hortorum rhizosphere: interactions, uptake and plant accumulation. J Plant Nutr 35:1374–1386CrossRefGoogle Scholar
  86. Ouariti O, Gouia H, Ghorbal MH (1997) Responses of bean and tomato plants to cadmium: growth, mineral nutrition, and nitrate reduction. Plant Physiol Biochem 35:347–354Google Scholar
  87. Piotrowska A, Bajguz A, Godlewska-Zylkiewicz B, Czerpak R, Kaminska M (2009) Jasmonic acid as modulator of lead toxicity in aquatic plant Wolffia arrhiza (Lemnaceae). Environ Exp Bot 66:507–513CrossRefGoogle Scholar
  88. Połeć-Pawlak K, Ruzik R, Lipiec E, Ciurzyńska M, Gawrońska H (2007) Investigation of Pb(II) binding to pectin in Arabidopsis thaliana. J Anal Atom Spectrom 22:968–972CrossRefGoogle Scholar
  89. Pourrut B, Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E (2008) Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J Plant Physiol 165:571–579CrossRefGoogle Scholar
  90. Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E (2011a) Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol 213:113–136Google Scholar
  91. Pourrut B, Jean S, Silvestre J, Pinelli E (2011b) Lead-induced DNA damage in Vicia faba root cells: potential involvement of oxidative stress. Mutat Res 726:123–128CrossRefGoogle Scholar
  92. Pourrut B, Shahid M, Douay F, Dumat C, Pinelli E (2013) Molecular mechanism involved in lead uptake, toxicity and detoxification in higher plants. In: Gupta DK, Corpas FJ, Palma JM (eds) Heavy metal stress in plants. Springer, Heidelberg, pp 121–147CrossRefGoogle Scholar
  93. Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P (2010) Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J Hazard Mater 177:465–474CrossRefGoogle Scholar
  94. Qiao X, Shi G, Chen L, Tian X, Xu X (2013) Lead-induced oxidative damage in sterile seedlings of Nymphoides peltatum. Environ Sci Pollut Res 20:5047–5055CrossRefGoogle Scholar
  95. Qufei L, Fashui H (2009) Effects of Pb2+ on the structure and function of photosystem II of Spirodela polyrrhiza. Biol Trace Elem Res 129:251–260CrossRefGoogle Scholar
  96. Radic S, Babić M, Škobić D, Roje V, Pevalek-Kozlina B (2010) Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxcol Environ Saf 73:336–342CrossRefGoogle Scholar
  97. Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromium and nickel absorption from polluted soil. Int J Environ Res 5:961–970Google Scholar
  98. Rezania S, Taib SM, Din MF, Dahalan FA, Kamyab H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599CrossRefGoogle Scholar
  99. Rodriguez E, Azevedo R, Moreira H, Souto L, Santos C (2013) Pb2+ exposure induced microsatellite instability in Pisum sativum in a locus related with glutamine metabolism. Plant Physiol Biochem 62:19–22CrossRefGoogle Scholar
  100. Romanowska E, Wróblewska B, Drozak A, Siedlecka M (2006) High light intensity protects photosynthetic apparatus of pea plants against exposure to lead. Plant Physiol Biochem 44:387–394CrossRefGoogle Scholar
  101. Romanowska E, Wasilewska W, Fristedt R, Vener AV, Zienkiewicz M (2012) Phosphorylation of PSII proteins in maize thylakoids in the presence of Pb ions. J Plant Physiol 169:345–352CrossRefGoogle Scholar
  102. Ros R, Morales A, Segura J, Picazo I (1992) In vivo and in vitro effects of nickel and cadmium on the plasmalemma ATPase from rice (Oryza sativa L.) shoots and roots. Plant Sci 83:1–6CrossRefGoogle Scholar
  103. Rucińska-Sobkowiak R, Nowaczyk G, Krzesłowska M, Rabęda I, Jurga S (2013) Water status and water diffusion transport in lupine roots exposed to lead. Environ Exp Bot 87:100–109CrossRefGoogle Scholar
  104. Rudakova EV, Karakis KD, Sidorshina ET (1988) The role of plant cell walls in the uptake and accumulation of metal ions. Fiziol Biochim Kult Rast 20:3–12Google Scholar
  105. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Biol 49:643–668CrossRefGoogle Scholar
  106. Sammut ML, Noack Y, Rose J, Hazemann JL, Proux O, Depoux M, Ziebel A, Fiani E (2010) Speciation of Cd and Pb in dust emitted from sinter plant. Chemosphere 78:445–450CrossRefGoogle Scholar
  107. Sengar RS, Gautam M, Sengar RS, Sengar RS, Garg SK, Sengar K, Chaudhary R (2009) Lead stress effects on physiobiochemical activities of higher plants. Rev Environ Contam Toxicol 196:1–21Google Scholar
  108. Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48:523–544CrossRefGoogle Scholar
  109. Shahid M, Pinelli E, Pourrut B, Silvestre J, Dumat C (2011) Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicol Environ Saf 74:78–84CrossRefGoogle Scholar
  110. Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 15:219–220Google Scholar
  111. Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52CrossRefGoogle Scholar
  112. Shi X, Wang S, Wang D, Sun H, Chen Y, Liu J, Jiang Z (2018) Woody species Rhus chinensis Mill. seedlings tolerance to Pb: Physiological and biochemical response. J Environ Sci 78:63–73CrossRefGoogle Scholar
  113. Shiowatana J, McLaren RG, Chanmekha N, Samphao A (2001) Fractionation of arsenic in soil by a continuous-flow sequential extraction method. J Environ Qual 30:1940–1949CrossRefGoogle Scholar
  114. Silveira MLA, Alleoni LRF, Guilherme LRG (2003) Biosolids and heavy metals in soils. Sci Agric 60:793–806CrossRefGoogle Scholar
  115. Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032CrossRefGoogle Scholar
  116. Smith RAH, Bradshaw AD (1992) Stabilization of toxic mine wastes by the use of tolerant plant populations. Trans Inst Min Metall 81:230–237Google Scholar
  117. Stadtman ER, Levine RL (2000) Protein oxidation. Ann N Y Acad Sci 899:191–208CrossRefGoogle Scholar
  118. Strubińska J, Hanaka A (2011) Adventitious root system reduces lead uptake and oxidative stress in sunflower seedlings. Biol Planta 55:771CrossRefGoogle Scholar
  119. Tomsig JL, Suszkiw JB (1991) Permeation of Pb through calcium channels: fura-2 measurements of voltage- and dihydropyridine-sensitive Pb entry in isolated bovine chromaffin cells. Biochim Biophys Acta 1069:197–200CrossRefGoogle Scholar
  120. Tomulescu IM, Radoviciu EM, Merca VV, Tuduce AD (2004) Effect of copper, zinc and lead and their combinations on the germination capacity of two cereals. J Agric Sci 15:39–42Google Scholar
  121. Uzu G, Sobanska S, Aliouane Y, Pradere P, Dumat C (2009) Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environ Pollut 157:1178–1185CrossRefGoogle Scholar
  122. Verma R, Suthar S (2015) Lead and cadmium removal from water using duckweed-Lemna gibba L.: impact of pH and initial metal load. Alex Eng J 54:1297–1304CrossRefGoogle Scholar
  123. Wang C, Wang X, Tian Y, Yu H, Gu X, Du W, Zhou H (2008) Oxidative stress, defense response, and early biomarkers for lead-contaminated soil in Vicia faba seedlings. Environ Toxicol Chem 27:970–977CrossRefGoogle Scholar
  124. Wedepohl KH (1956) Untersuchungen zur Geochemie des Bleis. Geochim Cosmochim Acta 10:69–148CrossRefGoogle Scholar
  125. Wierzbicka MH, Przedpełska E, Ruzik R, Ouerdane L, Połeć-Pawlak K, Jarosz M, Szpunar J, Szakiel A (2007) Comparison of the toxicity and distribution of cadmium and lead in plant cells. Protoplasma 231:99–111CrossRefGoogle Scholar
  126. Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:402647Google Scholar
  127. Xin J, Huang B, Dai H, Zhou W, Yi Y, Peng L (2015) Roles of rhizosphere and root-derived organic acids in Cd accumulation by two hot pepper cultivars. Environ Sci Pollut Res 22:6254–6261CrossRefGoogle Scholar
  128. Yadav S (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afr J Bot 76:167–179CrossRefGoogle Scholar
  129. Yan ZZ, Ke L, Tam NFY (2010) Lead stress in seedlings of Avicennia marina, a common mangrove species in South China, with and without cotyledons. Aquat Bot 92:112–118CrossRefGoogle Scholar
  130. Yang JL, Wang LC, Chang CY, Liu TY (1999) Singlet oxygen is the major participating in the induction of DNA strand breakage and 8-hydroxydeoxyguanosine adduct by lead acetate. Environ Mol Mutagen 33:194–201CrossRefGoogle Scholar
  131. Yang Y, Wei X, Lu J, You J, Wang W, Shi R (2010) Lead-induced phytotoxicity mechanism involved in seed germination and seedling growth of wheat (Triticum aestivum L.). Ecotox Environ Safet 73:1982–1987CrossRefGoogle Scholar
  132. Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464CrossRefGoogle Scholar
  133. Zheng L, Peer T, Seybold V, Lütz-Meindl U (2012) Pb-induced ultrastructural alterations and subcellular localization of Pb in two species of Lespedeza by TEM-coupled electron energy loss spectroscopy. Environ Exp Bot 77:196–206CrossRefGoogle Scholar
  134. Zhou L, Zhao Y, Wang S, Han S, Liu J (2015) Lead in the soil–mulberry (Morus alba L.)-silkworm (Bombyx mori) food chain: translocation and detoxification. Chemosphere 128:171–177CrossRefGoogle Scholar
  135. Zhou C, Huang M, Li Y, Luo J, Ping Cai L (2016) Changes in subcellular distribution and antioxidant compounds involved in Pb accumulation and detoxification in Neyraudia reynaudiana. Environ Sci Pollut Res 23:21794–21804CrossRefGoogle Scholar
  136. Zhu YL, Zayed AM, Quian JH, De Souza M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J Environ Qual 28:339–344CrossRefGoogle Scholar
  137. Zhu FY, Li L, Lam PY, Chen MX, Chye ML, Lo C (2013) Sorghum extracellular leucine-rich repeat protein SbLRR2 mediates lead tolerance in transgenic Arabidopsis. Plant Cell Physiol 54:1549–1559CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anindita Mitra
    • 1
  • Soumya Chatterjee
    • 2
  • Anna V. Voronina
    • 3
  • Clemens Walther
    • 4
  • Dharmendra K. Gupta
    • 5
    Email author
  1. 1.Department of ZoologyBankura Christian CollegeBankuraIndia
  2. 2.Defence Research Laboratory, DRDOTezpurIndia
  3. 3.Radiochemistry and Applied Ecology DepartmentUral Federal University, Physical Technology InstituteEkaterinburgRussia
  4. 4.Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS)HannoverGermany
  5. 5.Ministry of Environment, Forest and Climate Change, Indira Paryavaran BhavanAliganjIndia

Personalised recommendations