Advertisement

Articulation of Transition Systems and Its Application to Petri Net Synthesis

  • Raymond DevillersEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11522)

Abstract

In order to speed up the synthesis of Petri nets from labelled transition systems, a divide and conquer strategy consists in defining LTS decomposition techniques and corresponding PN composition operators to recombine the solutions of the various components. The paper explores how an articulation decomposition, possibly combined with a product and addition technique developed in previous papers, may be used in this respect and generalises sequence operators, as well as looping ones.

Keywords

Labelled transition systems Composition Decomposition Petri net synthesis 

Notes

Acknowledgements

The author thanks Eike Best as well as the anonymous referees for their useful remarks and suggestions.

References

  1. 1.
    Arnold, A.: Finite Transition Systems - Semantics of Communicating Systems. Prentice Hall International Series in Computer Science. Prentice Hall, Hertfordshire (1994)zbMATHGoogle Scholar
  2. 2.
    Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. TTCSAES. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47967-4CrossRefzbMATHGoogle Scholar
  3. 3.
    Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the synthesis of bounded nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.) CAAP 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-59293-8_207CrossRefGoogle Scholar
  4. 4.
    Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elementary net systems is NP-complete. Theor. Comput. Sci. 186(1–2), 107–134 (1997).  https://doi.org/10.1016/S0304-3975(96)00219-8MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Best, E., Devillers, R., Schlachter, U., Wimmel, H.: Simultaneous Petri net synthesis. Sci. Ann. Comput. Sci. 28(2), 199–236 (2018)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Best, E., Darondeau, P.: Petri net distributability. In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29709-0_1CrossRefGoogle Scholar
  7. 7.
    Best, E., Devillers, R.: Characterisation of the state spaces of live and bounded marked graph Petri nets. In: Dediu, A.-H., Martín-Vide, C., Sierra-Rodríguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370, pp. 161–172. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04921-2_13CrossRefzbMATHGoogle Scholar
  8. 8.
    Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. Monographs in Theoretical Computer Science. An EATCS Series. (2001).  https://doi.org/10.1007/978-3-662-04457-5CrossRefzbMATHGoogle Scholar
  9. 9.
    Best, E., Devillers, R., Koutny, M.: The box algebra = Petri nets + process expressions. Inf. Comput. 178(1), 44–100 (2002).  https://doi.org/10.1006/inco.2002.3117MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Best, E., Devillers, R., Schlachter, U.: Bounded choice-free Petri net synthesis: algorithmic issues. Acta Informatica 55(7), 575–611 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Best, E., Schlachter, U.: Analysis of Petri nets and transition systems. In: Proceedings 8th Interaction and Concurrency Experience, ICE 2015, Grenoble, France, 4–5th June 2015, pp. 53–67 (2015). https://doi.org/10.4204/EPTCS.189.6MathSciNetCrossRefGoogle Scholar
  12. 12.
    Devillers, R.: Factorisation of transition systems. Acta Informatica 55(4), 339–362 (2018)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Devillers, R., Schlachter, U.: Factorisation of Petri net solvable transition systems. In: Application and Theory of Petri Nets and Concurrency - 39th International Conference, PETRI NETS 2018, Bratislava, Slovakia, pp. 82–98 (2018)CrossRefGoogle Scholar
  14. 14.
    Hopcroft, J.E., Tarjan, R.E.: Efficient algorithms for graph manipulation [H] (algorithm 447). Commun. ACM 16(6), 372–378 (1973)CrossRefGoogle Scholar
  15. 15.
    Schlachter, U.: Over-approximative Petri net synthesis for restricted subclasses of nets. In: Klein, S.T., Martín-Vide, C., Shapira, D. (eds.) LATA 2018. LNCS, vol. 10792, pp. 296–307. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-77313-1_23CrossRefGoogle Scholar
  16. 16.
    Westbrook, J., Tarjan, R.E.: Maintaining bridge-connected and biconnected components on-line. Algorithmica 7(5&6), 433–464 (1992).  https://doi.org/10.1007/BF01758773MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université Libre de BruxellesBruxellesBelgium

Personalised recommendations