Generalized Alignment-Based Trace Clustering of Process Behavior

  • Mathilde BoltenhagenEmail author
  • Thomas ChatainEmail author
  • Josep CarmonaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11522)


Process mining techniques use event logs containing real process executions in order to mine, align and extend process models. The partition of an event log into trace variants facilitates the understanding and analysis of traces, so it is a common pre-processing in process mining environments. Trace clustering automates this partition; traditionally it has been applied without taking into consideration the availability of a process model. In this paper we extend our previous work on process model based trace clustering, by allowing cluster centroids to have a complex structure, that can range from a partial order, down to a subnet of the initial process model. This way, the new clustering framework presented in this paper is able to cluster together traces that are distant only due to concurrency or loop constructs in process models. We show the complexity analysis of the different instantiations of the trace clustering framework, and have implemented it in a prototype tool that has been tested on different datasets.



This work has been supported by Farman institute at ENS Paris-Saclay and by MINECO and FEDER funds under grant TIN2017-86727-C2-1-R.


  1. 1.
    van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016). Scholar
  2. 2.
    Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking - Relating Processes and Models. Springer, Cham (2018). Scholar
  3. 3.
    Chatain, T., Carmona, J., van Dongen, B.: Alignment-based trace clustering. In: Mayr, H.C., Guizzardi, G., Ma, H., Pastor, O. (eds.) ER 2017. LNCS, vol. 10650, pp. 295–308. Springer, Cham (2017). Scholar
  4. 4.
    Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Information Systems: Bridging People and Software Through Process Technology. Wiley, New York (2005)CrossRefGoogle Scholar
  5. 5.
    Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)CrossRefGoogle Scholar
  6. 6.
    Ferreira, D., Zacarias, M., Malheiros, M., Ferreira, P.: Approaching process mining with sequence clustering: experiments and findings. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 360–374. Springer, Heidelberg (2007). Scholar
  7. 7.
    Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process mining. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp. 109–120. Springer, Heidelberg (2009). Scholar
  8. 8.
    Bose, R.P.J.C., van der Aalst, W.M.P.: Context aware trace clustering: Towards improving process mining results. In: Proceedings of the SIAM International Conference on Data Mining, SDM 2009, pp. 401–412 (2009)Google Scholar
  9. 9.
    Bose, R.P.J.C., van der Aalst, W.M.P.: Trace clustering based on conserved patterns: towards achieving better process models. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 170–181. Springer, Heidelberg (2010). Scholar
  10. 10.
    Weerdt, J.D., vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Active trace clustering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12), 2708–2720 (2013)CrossRefGoogle Scholar
  11. 11.
    Hompes, B., Buijs, J., van der Aalst, W., Dixit, P., Buurman, H.: Discovering deviating cases and process variants using trace clustering. In: Proceedings of the 27th Benelux Conference on Artificial Intelligence (BNAIC 2015) (2015)Google Scholar
  12. 12.
    Ponce-de-León, H., Rodríguez, C., Carmona, J., Heljanko, K., Haar, S.: Unfolding-based process discovery. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.) ATVA 2015. LNCS, vol. 9364, pp. 31–47. Springer, Cham (2015). Scholar
  13. 13.
    Ponce de León, H., Rodríguez, C., Carmona, J.: POD - a tool for process discovery using partial orders and independence information. In: Proceedings of the BPM Demo Session 2015 Co-located with the 13th International Conference on Business Process Management (BPM 2015), pp. 100–104 (2015)Google Scholar
  14. 14.
    Lu, X., Fahland, D., van der Aalst, W.M.P.: Conformance checking based on partially ordered event data. In: Fournier, F., Mendling, J. (eds.) BPM 2014. LNBIP, vol. 202, pp. 75–88. Springer, Cham (2015). Scholar
  15. 15.
    de San Pedro, J., Cortadella, J.: Mining structured Petri nets for the visualization of process behavior. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, pp. 839–846 (2016)Google Scholar
  16. 16.
    Mokhov, A., Cortadella, J., de Gennaro, A.: Process windows. In: 17th International Conference on Application of Concurrency to System Design, ACSD 2017, pp. 86–95 (2017)Google Scholar
  17. 17.
    Lu, X., Fahland, D., van den Biggelaar, F.J.H.M., van der Aalst, W.M.P.: Detecting deviating behaviors without models. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 126–139. Springer, Cham (2016). Scholar
  18. 18.
    Benedikt, M., Puppis, G., Riveros, C.: Regular repair of specifications. In: Proceedings of the 26th Annual IEEE Symposium on Logic in Computer Science. LICS 2011, pp. 335–344 (2011)Google Scholar
  19. 19.
    Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4), 541–574 (1989)CrossRefGoogle Scholar
  20. 20.
    Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28(6), 575–591 (1991)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Berkhin, P.: A survey of clustering data mining techniques. In: Kogan, J., Nicholas, C., Teboulle, M. (eds.) Grouping Multidimensional Data, pp. 25–71. Springer, Heidelberg (2006). Scholar
  23. 23.
    Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J. Cybern. 3(3), 32–57 (1973). Scholar
  24. 24.
    Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)CrossRefGoogle Scholar
  25. 25.
    Czerwinski, W., Lasota, S., Lazic, R., Leroux, J., Mazowiecki, F.: The reachability problem for Petri nets is not elementary (extended abstract). CoRR abs/1809.07115 (2018)Google Scholar
  26. 26.
    Stewart, I.A.: Reachability in some classes of acyclic Petri nets. Fundam. Inform. 23(1), 91–100 (1995)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theor. Comput. Sci. 147(1&2), 117–136 (1995)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT 2(1–4), 1–26 (2006)zbMATHGoogle Scholar
  29. 29.
    Taymouri, F., Carmona, J.: Model and event log reductions to boost the computation of alignments. In: Ceravolo, P., Guetl, C., Rinderle-Ma, S. (eds.) SIMPDA 2016. LNBIP, vol. 307, pp. 1–21. Springer, Cham (2018). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LSV, CNRS, ENS Paris-Saclay, InriaUniversité Paris-SaclayCachanFrance
  2. 2.Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations