Laser and Light-Based Therapies in the Treatment of Hair Loss

  • Rachel Fayne
  • Nelson SanchezEmail author
  • Antonella Tosti


Laser and light-based therapies including low-level laser and light therapy, fractional, excimer, and other lasers are increasingly well-regarded treatment options for patients with hair loss.

Lasers emit wavelengths of light specific to a chromophore in the tissue, causing a targeted thermal response with minimal damage to surrounding tissue. The cascade of events downstream of the initial injury is responsible for the clinical effects seen. Low-level laser or light therapy (LLLT) was accidentally discovered in the 1960s when Hungarian scientist Endre Mester attempted to repeat an experiment performed by American Paul McGuff, who had cured malignant tumors in rats using a ruby laser. Mester’s laser was much less powerful than McGuff’s, and while he did not successfully cure any tumors, he observed for the first time that a low-level laser induced hair growth and improved wound healing. The mechanism by which this occurs is described as photobiomodulation or the stimulation of biological processes in the target tissue. This accidental discovery is the basis for the huge variety of LLLT products available on the market today.

In the last 2 years alone, the number of approved items classified as laser, comb, or hair products intended for the purpose of the growth of scalp hairs on the FDA’s 510(k) premarket notification list, meaning the device is demonstrated to be at least safe and effective, has nearly doubled to a total of 50. This chapter will summarize current knowledge regarding all laser and light devices for patients with various forms of alopecia and will outline treatment strategy, device parameters, and appropriate limitations of use to guide providers toward optimal patient management.


Low-level light therapy Fractional laser Erbium-glass laser Thallium laser CO2 laser Excimer laser Pulsed laser 


  1. 1.
    Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220(4596):524–7.PubMedCrossRefGoogle Scholar
  2. 2.
    McGuff PE, Deterling RA Jr, Gottlieb LS. Tumoricidal effect of laser energy on experimental and human malignant tumors. N Engl J Med. 1965;273(9):490–2.PubMedCrossRefGoogle Scholar
  3. 3.
    Hamblin MR. Photobiomodulation or low-level laser therapy. J Biophotonics. 2016;9(11–12):1122–4.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Gold MH. Update on fractional laser technology. J Clin Aesthet Dermatol. 2010;3(1):42–50.Google Scholar
  5. 5.
    Kim WS, Lee HI, Lee JW, Lim YY, Lee SJ, Kim BJ, et al. Fractional photothermolysis laser treatment of male pattern hair loss. Dermatol Surg. 2011;37(1):41–51.PubMedCrossRefGoogle Scholar
  6. 6.
    Meephansan J, Ungpraphakorn N, Ponnikorn S, Suchonwanit P, Poovorawan Y. Efficacy of 1,550-nm erbium-glass fractional laser treatment and its effect on the expression of insulin-like growth factor 1 and Wnt/beta-catenin in androgenetic alopecia. Dermatol Surg. 2018;44(10):1295–303.PubMedCrossRefGoogle Scholar
  7. 7.
    Ke J, Guan H, Li S, Xu L, Zhang L, Yan Y. Erbium: YAG laser (2,940 nm) treatment stimulates hair growth through upregulating Wnt 10b and beta-catenin expression in C57BL/6 mice. Int J Clin Exp Med. 2015;8(11):20883–9.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Lee GY, Lee SJ, Kim WS. The effect of a 1550 nm fractional erbium-glass laser in female pattern hair loss. J Eur Acad Dermatol Venereol. 2011;25(12):1450–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Gundin NL, Eckert MM, Crespo RL. Alopecia areata: good response to treatment with fractional laser in 5 cases. J Cosmetol Trichology. 2016;2:108. Scholar
  10. 10.
    Cho S, Choi MJ, Zheng Z, Goo B, Kim DY, Cho SB. Clinical effects of non-ablative and ablative fractional lasers on various hair disorders: a case series of 17 patients. J Cosmet Laser Ther. 2013;15(2):74–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Yoo KH, Kim MN, Kim BJ, Kim CW. Treatment of alopecia areata with fractional photothermolysis laser. Int J Dermatol. 2010;49(7):845–7.PubMedGoogle Scholar
  12. 12.
    Cho SB, Goo BL, Zheng Z, Yoo KH, Kang JS, Kim H. Therapeutic efficacy and safety of a 1927-nm fractionated thulium laser on pattern hair loss: an evaluator-blinded, split-scalp study. Lasers Med Sci. 2018;33(4):851–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Cho SB, Zheng Z, Kang JS, Kim H. Therapeutic efficacy of 1,927-nm fractionated thulium laser energy and polydeoxyribonucleotide on pattern hair loss. Med Laser. 2016;5:22–8.CrossRefGoogle Scholar
  14. 14.
    Bae JM, Jung HM, Goo B, Park YM. Hair regrowth through wound healing process after ablative fractional laser treatment in a murine model. Lasers Surg Med. 2015;47(5):433–40.PubMedCrossRefGoogle Scholar
  15. 15.
    Yalici-Armagan B, Elcin G. The effect of neodymium: yttrium aluminum garnet and fractional carbon dioxide lasers on alopecia areata: a prospective controlled clinical trial. Dermatol Surg. 2016;42(4):500–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Issa MC, Pires M, Silveira P, Xavier de Brito E, Sasajima C. Transepidermal drug delivery: a new treatment option for areata alopecia? J Cosmet Laser Ther. 2015;17(1):37–40.PubMedCrossRefGoogle Scholar
  17. 17.
    Darwin E, Heyes A, Hirt PA, Wikramanayake TC, Jimenez JJ. Low-level laser therapy for the treatment of androgenic alopecia: a review. Lasers Med Sci. 2018;33(2):425–34.PubMedCrossRefGoogle Scholar
  18. 18.
    Lubart R, Eichler M, Lavi R, Friedman H, Shainberg A. Low-energy laser irradiation promotes cellular redox activity. Photomed Laser Surg. 2005;23(1):3–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Eells JT, Wong-Riley MT, VerHoeve J, Henry M, Buchman EV, Kane MP, et al. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion. 2004;4(5–6):559–67.PubMedCrossRefGoogle Scholar
  20. 20.
    Pastore D, Greco M, Passarella S. Specific helium-neon laser sensitivity of the purified cytochrome c oxidase. Int J Radiat Biol. 2000;76(6):863–70.PubMedCrossRefGoogle Scholar
  21. 21.
    Sakurai Y, Yamaguchi M, Abiko Y. Inhibitory effect of low-level laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci. 2000;108(1):29–34.PubMedCrossRefGoogle Scholar
  22. 22.
    Arany PR, Nayak RS, Hallikerimath S, Limaye AM, Kale AD, Kondaiah P. Activation of latent TGF-beta1 by low-power laser in vitro correlates with increased TGF-beta1 levels in laser-enhanced oral wound healing. Wound Repair Regen. 2007;15(6):866–74.PubMedCrossRefGoogle Scholar
  23. 23.
    de Lima FM, Villaverde AB, Albertini R, Corrêa JC, Carvalho RL, Munin E, et al. Dual effect of low-level laser therapy (LLLT) on the acute lung inflammation induced by intestinal ischemia and reperfusion: action on anti- and pro-inflammatory cytokines. Lasers Surg Med. 2011;43(5):410–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Fonda-Pascual P, Moreno-Arrones OM, Saceda-Corralo D, et al. Effectiveness of low level laser therapy in lichen planopilaris. J Am Acad Dermatol. 2018;78(5):1029–3.CrossRefGoogle Scholar
  25. 25.
    Leavitt M, Charles G, Heyman E, Michaels D. HairMax LaserComb laser phototherapy device in the treatment of male androgenetic alopecia: a randomized, double-blind, sham device-controlled, multicentre trial. Clin Drug Investig. 2009;29(5):283–92.PubMedCrossRefGoogle Scholar
  26. 26.
    Jimenez JJ, Wikramanayake TC, Bergfeld W, Hordinsky M, Hickman JG, Hamblin MR, et al. Efficacy and safety of a low-level laser device in the treatment of male and female pattern hair loss: a multicenter, randomized, sham device-controlled, double-blind study. Am J Clin Dermatol. 2014;15(2):115–27.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Munck A, Gavazzoni MF, Trueb RM. Use of low-level laser therapy as monotherapy or concomitant therapy for male and female androgenetic alopecia. Int J Trichology. 2014;6(2):45–9.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Satino JM, Markou M. Hair regrowth and increased hair tensile strength using the HairMax LaserComb for low-level laser therapy. Int J Cosmet Surg Aesthet Dermatol. 2003;5(2):113–7.CrossRefGoogle Scholar
  29. 29.
    Lanzafame RJ, Blanche RR, Chiacchierini RP, Kazmirek ER, Sklar JA. The growth of human scalp hair in females using visible red light laser and LED sources. Lasers Surg Med. 2014;46(8):601–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Lanzafame RJ, Blanche RR, Bodian AB, Chiacchierini RP, Fernandez-Obregon A, Kazmirek ER. The growth of human scalp hair mediated by visible red light laser and LED sources in males. Lasers Surg Med. 2013;45(8):487–95.PubMedCrossRefGoogle Scholar
  31. 31.
    Kim H, Choi JW, Kim JY, Shin JW, Lee SJ, Huh CH. Low-level light therapy for androgenetic alopecia: a 24-week, randomized, double-blind, sham device-controlled multicenter trial. Dermatol Surg. 2013;39(8):1177–83.PubMedCrossRefGoogle Scholar
  32. 32.
    Friedman S, Schnoor P. Novel approach to treating androgenetic alopecia in females with photobiomodulation (low-level laser therapy). Dermatol Surg. 2017;43(6):856–67.PubMedCrossRefGoogle Scholar
  33. 33.
    Esmat SM, Hegazy RA, Gawdat HI, Abdel Hay RM, Allam RS, El Naggar R, et al. Low level light-minoxidil 5% combination versus either therapeutic modality alone in management of female patterned hair loss: a randomized controlled study. Lasers Surg Med. 2017;49(9):835–43.PubMedCrossRefGoogle Scholar
  34. 34.
    Barikbin B, Khodamrdi Z, Kholoosi L, Akhgri MR, Haj Abbasi M, Hajabbasi M, et al. Comparison of the effects of 665 nm low level diode laser hat versus and a combination of 665 nm and 808 nm low level diode laser scanner of hair growth in androgenic alopecia. J Cosmet Laser Ther. 2017.
  35. 35.
    Blum K, Han D, Madigan MA, Lohmann R, Braverman ER. “Cold” X5 Hairlaser used to treat male androgenic alopecia and hair growth: an uncontrolled pilot study. BMC Res Notes. 2014;7:103.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Avram MR, Rogers NE. The use of low-level light for hair growth: part I. J Cosmet Laser Ther. 2009;11(2):110–7.PubMedCrossRefGoogle Scholar
  37. 37.
    Kim SS, Park MW, Lee CJ. Phototherapy of androgenetic alopecia with low level narrow band 655-nm red light and 780-nm infrared light. J Am Acad Dermatol. 2007;56(2):AB112.Google Scholar
  38. 38.
    Hughes OB, Maderal AD, Tosti A. An unusual case of contact dermatitis. Skin Appendage Disord. 2017;3(3):163–5.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Feldman SR, Mellen BG, Housman TS, Fitzpatrick RE, Geronemus RG, Friedman PM, et al. Efficacy of the 308-nm excimer laser for treatment of psoriasis: results of a multicenter study. J Am Acad Dermatol. 2002;46(6):900–6.PubMedCrossRefGoogle Scholar
  40. 40.
    McMichael AJ. Excimer laser: a module of the alopecia areata common protocol. J Investig Dermatol Symp Proc. 2013;16(1):S77–9.PubMedCrossRefGoogle Scholar
  41. 41.
    Beggs S, Short J, Rengifo-Pardo M, Ehrlich A. Applications of the excimer laser: a review. Dermatol Surg. 2015;41(11):1201–11.PubMedCrossRefGoogle Scholar
  42. 42.
    Gundogan C, Greve B, Raulin C. Treatment of alopecia areata with the 308-nm xenon chloride excimer laser: case report of two successful treatments with the excimer laser. Lasers Surg Med. 2004;34(2):86–90.PubMedCrossRefGoogle Scholar
  43. 43.
    Zakaria W, Passeron T, Ostovari N, Lacour JP, Ortonne JP. 308-nm excimer laser therapy in alopecia areata. J Am Acad Dermatol. 2004;51(5):837–8.PubMedCrossRefGoogle Scholar
  44. 44.
    Al-Mutairi N. 308-nm excimer laser for the treatment of alopecia areata in children. Pediatr Dermatol. 2009;26(5):547–50.PubMedCrossRefGoogle Scholar
  45. 45.
    Al-Mutairi N. 308-nm excimer laser for the treatment of alopecia areata. Dermatol Surg. 2007;33(12):1483–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Ohtsuki A, Hasegawa T, Ikeda S. Treatment of alopecia areata with 308-nm excimer lamp. J Dermatol. 2010;37(12):1032–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Ohtsuki A, Hasegawa T, Komiyama E, Takagi A, Kawasaki J, Ikeda S. 308-nm excimer lamp for the treatment of alopecia areata: clinical trial on 16 cases. Indian J Dermatol. 2013;58(4):326.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Fertig R, Tosti A. Frontal fibrosing alopecia treatment options. Intractable Rare Dis Res. 2016;5(4):314–5.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Navarini AA, Kolios AG, Prinz-Vavricka BM, Haug S, Trüeb RM. Low-dose excimer 308-nm laser for treatment of lichen planopilaris. Arch Dermatol. 2011;147(11):1325–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Yamazaki M, Miura Y, Tsuboi R, Ogawa H. Linear polarized infrared irradiation using Super Lizer is an effective treatment for multiple-type alopecia areata. Int J Dermatol. 2003;42(9):738–40.PubMedCrossRefGoogle Scholar
  51. 51.
    Waiz M, Saleh AZ, Hayani R, Jubory SO. Use of the pulsed infrared diode laser (904 nm) in the treatment of alopecia areata. J Cosmet Laser Ther. 2006;8(1):27–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Nanda S, Bansal S. Long pulsed Nd:YAG laser with inbuilt cool sapphire tip for long term hair reduction on type-IV and V skin: a prospective analysis of 200 patients. Indian J Dermatol Venereol Leprol. 2010;76(6):677–81.PubMedCrossRefGoogle Scholar
  53. 53.
    Cheyasak N, Manuskiatti W, Maneeprasopchoke P, Wanitphakdeedecha R. Topical corticosteroids minimise the risk of postinflammatory hyper-pigmentation after ablative fractional CO2 laser resurfacing in Asians. Acta Derm Venereol. 2015;95(2):201–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Navratil L, Kymplova J. Contraindications in noninvasive laser therapy: truth and fiction. J Clin Laser Med Surg. 2002;20(6):341–3.PubMedCrossRefGoogle Scholar
  55. 55.
    Semenkov VF, et al. [Effect of low intensity laser radiation with various wavelength on bone marrow immunopoiesis progenitors]. Biofizika. 1993;38(3):504–6.Google Scholar
  56. 56.
    Shields TD, O’Kane S, Gilmore WS. The effect of laser irradiation upon human mononuclear leukocytes. Lasers Surg Med Suppl. 1992;4:11.Google Scholar
  57. 57.
    Cheetham M, Young S, Dyson M. 820-nm irradiation of the healthy growth plate. Lasers Surg Med Suppl. 1991;3:12.Google Scholar
  58. 58.
    Pontinen PJ. Low-level laser therapy as a medical treatment modality. Tampere: Art Urpo; 1992.Google Scholar
  59. 59.
    Dawe RS, Ibbotson SH. Drug-induced photosensitivity. Dermatol Clin. 2014;32(3):363–8, ix.PubMedCrossRefGoogle Scholar
  60. 60.
    Buscone S, Mardaryev AN, Raafs B, Bikker JW, Sticht C, Gretz N, et al. A new path in defining light parameters for hair growth: discovery and modulation of photoreceptors in human hair follicle. Lasers Surg Med. 2017;49(7):705–18.PubMedCrossRefGoogle Scholar
  61. 61.
    Dodd EM, Winter MA, Hordinsky MK, Sadick NS, Farah RS. Photobiomodulation therapy for androgenetic alopecia: a clinician’s guide to home-use devices cleared by the Federal Drug Administration. J Cosmet Laser Ther. 2018;20(3):159–67.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Dr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiUSA
  2. 2.Fredric Brandt Endowed Professor of Dermatology, Dr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiUSA

Personalised recommendations