Seeking Topological Phases in Fractals

  • Adhip AgarwalaEmail author
Part of the Springer Theses book series (Springer Theses)


As we had seen in Table  1.1, the classification of topological systems is described by a tenfold scheme and a periodicity in spatial dimensions d. Notions of integral dimensions and bulk-boundary correspondence lies at the heart of the topological band theory [1, 2, 3, 4]. A nontrivial invariant calculated for a periodic system signals existence of robust boundary states for the same system with a boundary. This correspondence is the progenitor of formulations of various invariants such as TKNN invariant (Chern number) [5], the Pfaffian and others (for a recent review see [3]) which lead to exotic boundary physics. However, not every system has a well defined “bulk” or “boundary”. Neither does every system have a well defined dimension. Is there a notion of a topological state in such systems? If yes, how can they be characterized?


  1. 1.
    Hasan MZ, Kane CL (2010) Colloquium: topological insulators. Rev Mod Phys 82:3045–3067CrossRefADSGoogle Scholar
  2. 2.
    Qi X-L, Zhang S-C (2011) Topological insulators and superconductors. Rev Mod Phys 83:1057–1110CrossRefADSGoogle Scholar
  3. 3.
    Chiu CK, Teo JCY, Schnyder AP, Ryu S (2016) Classification of topological quantum matter with symmetries. Rev Mod Phys 88:035005Google Scholar
  4. 4.
    Ludwig AWW (2016) Topological phases: classification of topological insulators and superconductors of non-interacting fermions, and beyond. Phys Scr 2016(T168):014001. Scholar
  5. 5.
    Thouless DJ, Kohmoto M, Nightingale MP, den Nijs M (1982) Quantized hall conductance in a two-dimensional periodic potential. Phys Rev Lett 49:405–408CrossRefADSGoogle Scholar
  6. 6.
    Domany E, Alexander S, Bensimon D, Kadanoff LP (1983) Solutions to the Schrödinger equation on some fractal lattices. Phys Rev B 28:3110–3123MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Mandelbrot BB, Pignoni R (1983) The fractal geometry of nature. WH Freeman, New YorkGoogle Scholar
  8. 8.
    Gefen Y, Mandelbrot BB, Aharony A (1980) Critical phenomena on fractal lattices. Phys Rev Lett 45:855–858MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    Gefen Y, Aharony A, Mandelbrot BB, Kirkpatrick S (1981) Solvable fractal family, and its possible relation to the backbone at percolation. Phys Rev Lett 47:1771–1774MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Rammal R, Toulouse G (1982) Spectrum of the Schrödinger equation on a self-similar structure. Phys Rev Lett 49:1194–1197MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Alexander S, Orbach R (1982) Density of states on fractals:fractons. Journal de Physique Lettres 43(17):625–631CrossRefGoogle Scholar
  12. 12.
    van Veen E, Yuan S, Katsnelson MI, Polini M, Tomadin A (2016) Quantum transport in Sierpinski carpets. Phys Rev B 93:115428CrossRefADSGoogle Scholar
  13. 13.
    Alexander S (1984) Some properties of the spectrum of the Sierpinski gasket in a magnetic field. Phys Rev B 29:5504–5508MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Fukushima M, Shima T (1992) On a spectral analysis for the Sierpinski gasket. Potential Anal 1(1):1–35MathSciNetCrossRefGoogle Scholar
  15. 15.
    Wang XR (1995) Localization in fractal spaces: exact results on the Sierpinski gasket. Phys Rev B 51:9310–9313CrossRefADSGoogle Scholar
  16. 16.
    Chakrabarti A (1996) Exact results for infinite and finite Sierpinski gasket fractals: extended electron states and transmission properties. J Phys Condens Matter 8(50):10951CrossRefADSGoogle Scholar
  17. 17.
    Pal B, Chakrabarti A (2012) Staggered and extreme localization of electron states in fractal space. Phys Rev B 85:214203CrossRefADSGoogle Scholar
  18. 18.
    Gordon JM, Goldman AM, Maps J, Costello D, Tiberio R, Whitehead B (1986) Superconducting-normal phase boundary of a fractal network in a magnetic field. Phys Rev Lett 56:2280–2283CrossRefADSGoogle Scholar
  19. 19.
    Shang J, Wang Y, Chen M, Dai J, Zhou X, Kuttner J, Hilt G, Shao X, Gottfried JM, Wu K (2015) Assembling molecular Sierpiński triangle fractals. Nat Chem 7(5):389–393CrossRefADSGoogle Scholar
  20. 20.
    Song ZG, Zhang YY, Li SS (2014) The topological insulator in a fractal space. Appl Phys Lett 104(23):1–5CrossRefADSGoogle Scholar
  21. 21.
    Bernevig BA, Hughes TL (2013) Topological insulators and topological superconductors. Princeton University Press, PrincetonGoogle Scholar
  22. 22.
    Loring TA, Hastings MB (2010) Disordered topological insulators via C*-algebras. Eur Phys Lett 92(6):67004CrossRefADSGoogle Scholar
  23. 23.
    Datta S (1997) Electronic transport in mesoscopic systems. Cambridge University Press, CambridgeGoogle Scholar
  24. 24.
    Fradkin E (2013) Field theories of condensed matter physics. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.International Centre for Theoretical SciencesTata Institute of Fundamental ResearchBangaloreIndia

Personalised recommendations