• Adhip AgarwalaEmail author
Part of the Springer Theses book series (Springer Theses)


This chapter forms the introduction to the thesis. It motivates the many questions, revisits some of the fundamental ideas in quantum condensed matter and whets the appetite for what is yet to come.


  1. 1.
    Anderson PW (1972) More is different. Science 177(4047):393–396. arXiv:1011.1669v3CrossRefADSGoogle Scholar
  2. 2.
    Marx K, Engels F (1987) Karl Marx and Frederick Engels collected works, vol 25. International PublishersGoogle Scholar
  3. 3.
    Wilhelm M, Mathison D, Cameron J (2009) Avatar: a confidential report on the biological and social history of Pandora. HarperCollins, UKGoogle Scholar
  4. 4.
    Abrahams E, Anderson PW, Licciardello DC, Ramakrishnan TV (1979) Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys Rev Lett 42:673–676CrossRefADSGoogle Scholar
  5. 5.
    Kondo J (1964) Resistance minimum in dilute magnetic alloys. Prog Theor Phys 32(1):37–49CrossRefADSGoogle Scholar
  6. 6.
    Balian R, Maynard R, Toulouse G (1983) III-condensed matter, vol 31. World ScientificGoogle Scholar
  7. 7.
    Wilson KG (1975) The renormalization group: critical phenomena and the kondo problem. Rev Mod Phys 47:773–840MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Klitzing KV, Dorda G, Pepper M (1980) New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys Rev Lett 45:494–497CrossRefADSGoogle Scholar
  9. 9.
    Von Klitzing K (1986) The quantized hall effect. Rev Mod Phys 58(3):519CrossRefADSGoogle Scholar
  10. 10.
    Abbott BP, Abbott R et al (2016) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    Thouless DJ, Kohmoto M, Nightingale MP, den Nijs M (1982) Quantized hall conductance in a two-dimensional periodic potential. Phys Rev Lett 49:405–408CrossRefADSGoogle Scholar
  12. 12.
    Néel L (1971) Magnetism and local molecular field. Science 174(4013):985–992CrossRefADSGoogle Scholar
  13. 13.
    Landau L (1930) Diamagnetismus der metalle. Zeitschrift für Physik 64(9–10):629–637CrossRefADSGoogle Scholar
  14. 14.
    Su WP, Schrieffer JR, Heeger AJ (1980) Soliton excitations in polyacetylene. Phys Rev B 22:2099–2111CrossRefADSGoogle Scholar
  15. 15.
    Haldane FDM (1988) Model for a quantum hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys Rev Lett 61:2015–2018MathSciNetCrossRefADSGoogle Scholar
  16. 16.
    Kane CL, Mele EJ (2005) \(Z_2\) topological order and the quantum spin hall effect. Phys Rev Lett 95:146802Google Scholar
  17. 17.
    Kane CL, Mele EJ (2005) Quantum spin hall effect in graphene. Phys Rev Lett 95:226801Google Scholar
  18. 18.
    Kitaev AY (2001) Unpaired majorana fermions in quantum wires. Physics-Uspekhi 44(10S):131CrossRefADSGoogle Scholar
  19. 19.
    Altland A, Zirnbauer MR (1997) Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys Rev B 55:1142–1161CrossRefADSGoogle Scholar
  20. 20.
    Kitaev A (2009) Periodic table for topological insulators and superconductors. AIP Conf Proc 1134:22–30Google Scholar
  21. 21.
    Schnyder AP, Ryu S, Furusaki A, Ludwig AWW (2008) Classification of topological insulators and superconductors in three spatial dimensions. Phys Rev B 78:195125CrossRefADSGoogle Scholar
  22. 22.
    Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109:1492–1505CrossRefADSGoogle Scholar
  23. 23.
    Mott NF, Davis EA (1971) Electronic processes in non-crystalline materialsGoogle Scholar
  24. 24.
    Thouless DJ (1983) Percolation and localization. In: Balian R et al (eds) III-condensed matter: les houches session XXXI. Published by World Scientific Publishing Co. Pte. Ltd., pp 1–62. ISBN 9789814412728Google Scholar
  25. 25.
    Lee PA, Ramakrishnan TV (1985) Disordered electronic systems. Rev Mod Phys 57:287–337CrossRefGoogle Scholar
  26. 26.
    Kramer B, MacKinnon A (1993) Localization: theory and experiment. Rep Prog Phys 56(12):1469CrossRefADSGoogle Scholar
  27. 27.
    Ramakrishnan T (1987) Electron localization. In: Chance and matter, proceedings of the Les Houches summer school, session XLVI, pp 213–303Google Scholar
  28. 28.
    Markoš P (2006) Numerical analysis of the Anderson localization. Acta Phys Slovaca 56:561–685Google Scholar
  29. 29.
    Bulka B, Schreiber M, Kramer B (1987) Localization, quantum interference, and the metal-insulator transition. Zeitschrift fur Physik B Condensed Matter 66(1):21–30CrossRefADSGoogle Scholar
  30. 30.
    Anderson PW (1961) Localized magnetic states in metals. Phys Rev 124:41–53MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    Hewson AC (1997) The Kondo problem to heavy fermions, vol 2. Cambridge University Press, CambridgeGoogle Scholar
  32. 32.
    Sarachik MP, Corenzwit E, Longinotti LD (1964) Resistivity of Mo-Nb and Mo-Re alloys containing 1% Fe. Phys Rev 135:A1041–A1045CrossRefADSGoogle Scholar
  33. 33.
    Yosida K (1966) Bound state due to the \(s\)-\(d\) exchange interaction. Phys Rev 147:223–227CrossRefGoogle Scholar
  34. 34.
    Anderson P (1970) A poor man’s derivation of scaling laws for the kondo problem. J Phys C: Solid State Phys 3(12):2436CrossRefADSGoogle Scholar
  35. 35.
    Krishna-murthy HR, Wilkins JW, Wilson KG (1980) Renormalization-group approach to the anderson model of dilute magnetic alloys. i. static properties for the symmetric case. Phys Rev B 21:1003–1043CrossRefADSGoogle Scholar
  36. 36.
    Krishna-murthy HR, Wilkins JW, Wilson KG (1980) Renormalization-group approach to the anderson model of dilute magnetic alloys. ii. static properties for the asymmetric case. Phys Rev B 21:1044–1083CrossRefADSGoogle Scholar
  37. 37.
    Hirsch JE, Fye RM (1986) Monte carlo method for magnetic impurities in metals. Phys Rev Lett 56:2521–2524CrossRefADSGoogle Scholar
  38. 38.
    Sakurai JJ, Tuan S-F, Cummins ED (1995) Modern quantum mechanics, revised ednGoogle Scholar
  39. 39.
    Shankar R (2012) Principles of quantum mechanics. Springer Science & Business MediaGoogle Scholar
  40. 40.
    Bernevig BA, Hughes TL (2013) Topological insulators and topological superconductors. Princeton University Press, PrincetonCrossRefGoogle Scholar
  41. 41.
    Shen S-Q (2013) Topological insulators: Dirac equation in condensed matters, vol 174. Springer Science & Business MediaGoogle Scholar
  42. 42.
    Fradkin E (2013) Field theories of condensed matter physics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  43. 43.
    Fukui T, Hatsugai Y, Suzuki H (2005) Chern numbers in discretized brillouin zone: efficient method of computing (spin) hall conductances. J Phys Soc Jpn 74(6):1674–1677CrossRefADSGoogle Scholar
  44. 44.
    Thouless DJ (1984) Wannier functions for magnetic sub-bands. J Phys C: Solid State Phys 17(12):L325MathSciNetCrossRefADSGoogle Scholar
  45. 45.
    Thonhauser T, Vanderbilt D (2006) Insulator/chern-insulator transition in the haldane model. Phys Rev B 74:235111CrossRefADSGoogle Scholar
  46. 46.
    Bernevig BA, Hughes TL, Zhang S-C (2006) Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 314(5806):1757–1761CrossRefADSGoogle Scholar
  47. 47.
    Hasan MZ, Kane CL (2010) Colloquium: topological insulators. Rev Mod Phys 82:3045–3067CrossRefADSGoogle Scholar
  48. 48.
    Qi X-L, Zhang S-C (2011) Topological insulators and superconductors. Rev Mod Phys 83:1057–1110CrossRefADSGoogle Scholar
  49. 49.
    Qi X-L, Zhang S-C (2010) The quantum spin Hall effect and topological insulators. Phys Today 63:33CrossRefGoogle Scholar
  50. 50.
    Ludwig AWW (2016) Topological phases: classification of topological insulators and superconductors of non-interacting fermions, and beyond. Phys Scr 2016(T168):014001. arXiv:1512.08882CrossRefADSGoogle Scholar
  51. 51.
    Chiu CK, Teo JCY, Schnyder AP, Ryu S (2016) Classification of topological quantum matter with symmetries. Rev Mod Phys 88:035005CrossRefADSGoogle Scholar
  52. 52.
    Ryu S, Schnyder AP, Furusaki A, Ludwig AWW (2010) Topological insulators and superconductors: tenfold way and dimensional hierarchy. New J Phys 12(6):065010CrossRefADSGoogle Scholar
  53. 53.
    Wen X-G (2016) Zoo of quantum-topological phases of matter, pp 1–16. arXiv:1610.03911
  54. 54.
    Hasan MZ, Kane CL (2010) Colloquium. Rev Mod Phys 82:3045–3067Google Scholar
  55. 55.
    Ando Y (2013) Topological insulator materials. J Phys Soc Jpn 82(10):102001CrossRefADSGoogle Scholar
  56. 56.
    Baskaran G (2016) arXiv:1608.08587. In: Chandra P, Coleman P, Kotliar G, Ong P, Stein DL, Clare Yu (eds) PWA90 A life time of emergence (World Scientific 2016) and Anderson PW, in Modern physics in America—a Michaelson–Morley centennial symposium, Fickinger W, Kuwalski KL (eds) AIP conference proceedings 169 (American Institute of Physics, 1988)
  57. 57.
    Anderson PW, Baskaran G, Zou Z, Hsu T (1987) Resonating valence-bond theory of phase transitions and superconductivity in La\(_2\)Cuo\(_4\)-based compounds. Phys Rev Lett 58:2790–2793CrossRefGoogle Scholar
  58. 58.
    Manchon A, Koo HC, Nitta J, Frolov SM, Duine RA (2015) New perspectives for rashba spin-orbit coupling. Nat Mater 14:871–882 (review)CrossRefADSGoogle Scholar
  59. 59.
    Nandkishore R, Huse DA (2015) Many body localization and thermalization in quantum statistical mechanics. Ann Rev Condens Matter Phys 6(1):15–38CrossRefADSGoogle Scholar
  60. 60.
    Kitaev A (2015) A simple model of quantum holography. Talks at KITPGoogle Scholar
  61. 61.
    Georges A, Kotliar G, Krauth W, Rozenberg MJ (1996) Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev Mod Phys 68:13–125MathSciNetCrossRefADSGoogle Scholar
  62. 62.
    Bansil A, Lin H, Das T (2016) Colloquium. Rev Mod Phys 88:021004CrossRefADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.International Centre for Theoretical SciencesTata Institute of Fundamental ResearchBangaloreIndia

Personalised recommendations