Advertisement

Properties of Finite Lattices” by S. Reeg and W. Weiß, Revisited

In Memoriam Peter Burmeister (1941–2019)
  • Bernhard GanterEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11511)

Abstract

We review an attribute exploration form 1990, which was never published, although the results are impressive. We suggest a method for making implication lists better readable and demonstrate its effect on the canonical basis obtained from that exploration by Reeg and Weiß.

References

  1. 1.
    Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1998).  https://doi.org/10.1007/978-3-642-59830-2CrossRefzbMATHGoogle Scholar
  2. 2.
    Burmeister, P.: ConImp: Ein Programm zur Formalen Begriffsanalyse. In: [11], pp. 25–56Google Scholar
  3. 3.
    Reeg, S., Weiß, W.: Properties of finite lattices. Master’s thesis, Technische Universität Darmstadt (1990) (Diplomarbeit)Google Scholar
  4. 4.
    Stern, M.: Semimodular Lattices. Teubner, Stuttgart (1991)CrossRefGoogle Scholar
  5. 5.
    Ganter, B., Obiedkov, S.: Conceptual exploration. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49291-8CrossRefzbMATHGoogle Scholar
  6. 6.
    Birkhoff, G.: Lattice Theory, 3rd edn. Volume 25 of Colloquium Publications. American Mathematical Society, Providence (1967)Google Scholar
  7. 7.
    Crawley, P., Dilworth, R.: Algebraic Theory of Lattices. Prentice-Hall, Englewood Cliffs (1973)zbMATHGoogle Scholar
  8. 8.
    Grätzer, G.: General Lattice Theory. Birkhäuser Verlag, Basel (2003)zbMATHGoogle Scholar
  9. 9.
    Wille, R.: Halbkomplementäre Verbände. Math. Zeitschrift 94, 1–31 (1966)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kemper, A., Eickler, A.: Datenbanksysteme: Eine Einführung. Oldenbourg (2009)Google Scholar
  11. 11.
    Stumme, G., Wille, R. (eds.): Begriffliche Wissensverarbeitung – Methoden und Anwendungen. Springer, Heidelberg (2000)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institut für Algebra, Technische Universität DresdenDresdenGermany

Personalised recommendations