Advertisement

Dualization in Lattices Given by Implicational Bases

  • Oscar DefrainEmail author
  • Lhouari Nourine
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11511)

Abstract

It was recently proved that the dualization in lattices given by implicational bases is impossible in output-polynomial time unless \(\mathsf{P}\!=\!\mathsf{NP}\). In this paper, we show that this result holds even when the premises in the implicational base are of size at most two. In the case of premises of size one—when the lattice is distributive—we show that the dualization is possible in output quasi-polynomial time whenever the graph of implications is of bounded maximum induced matching. Lattices that share this property include distributive lattices coded by the ideals of an interval order.

Keywords

Lattice dualization Transversals enumeration Implicational base Distributive lattices Interval order 

References

  1. 1.
    Babin, M.A., Kuznetsov, S.O.: Enumerating minimal hypotheses and dualizing monotone boolean functions on lattices. In: Valtchev, P., Jäschke, R. (eds.) ICFCA 2011. LNCS (LNAI), vol. 6628, pp. 42–48. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20514-9_5CrossRefGoogle Scholar
  2. 2.
    Babin, M.A., Kuznetsov, S.O.: Dualization in lattices given by ordered sets of irreducibles. Theor. Comput. Sci. 658, 316–326 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Birkhoff, G.: Rings of sets. Duke Math. J. 3(3), 443–454 (1937)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Birkhoff, G.: Lattice Theory, vol. 25. American Mathematical Society, New York (1940)zbMATHGoogle Scholar
  5. 5.
    Bogart, K.P.: An obvious proof of Fishburn’s interval order theorem. Discrete Mathe. 118(1–3), 239–242 (1993)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Creignou, N., Kröll, M., Pichler, R., Skritek, S., Vollmer, H.: A complexity theory for hard enumeration problems. Discrete Appl. Math. (2019).  https://doi.org/10.1016/j.dam.2019.02.025
  7. 7.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  8. 8.
    Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and related problems. SIAM J. Comput. 24(6), 1278–1304 (1995)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and generating hypergraph transversals. SIAM J. Comput. 32(2), 514–537 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Eiter, T., Makino, K., Gottlob, G.: Computational aspects of monotone dualization: a brief survey. Discrete Appl. Math. 156(11), 2035–2049 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Elbassioni, K.M.: An algorithm for dualization in products of lattices and its applications. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 424–435. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45749-6_39CrossRefGoogle Scholar
  12. 12.
    Elbassioni, K.M.: Algorithms for dualization over products of partially ordered sets. SIAM J. Discrete Math. 23(1), 487–510 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Fishburn, P.C.: Intransitive indifference with unequal indifference intervals. J. Math. Psychol. 7(1), 144–149 (1970)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W. H. Freeman, New York (2002)Google Scholar
  16. 16.
    Grätzer, G.: Lattice Theory: Foundation. Springer, Basel (2011).  https://doi.org/10.1007/978-3-0348-0018-1CrossRefzbMATHGoogle Scholar
  17. 17.
    Gunopulos, D., Mannila, H., Khardon, R., Toivonen, H.: Data mining, hypergraph transversals, and machine learning. In: PODS, pp. 209–216. ACM (1997)Google Scholar
  18. 18.
    Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Kavvadias, D.J., Sideri, M., Stavropoulos, E.C.: Generating all maximal models of a boolean expression. Inf. Process. Lett. 74(3–4), 157–162 (2000)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nourine, L., Petit, J.M.: Extending set-based dualization: application to pattern mining. In: Proceedings of the 20th European Conference on Artificial Intelligence, pp. 630–635. IOS Press (2012)Google Scholar
  21. 21.
    Nourine, L., Petit, J.M.: Dualization on partially ordered sets: preliminary results. In: Kotzinos, D., Choong, Y.W., Spyratos, N., Tanaka, Y. (eds.) ISIP 2014. CCIS, vol. 497, pp. 23–34. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-38901-1_2CrossRefGoogle Scholar
  22. 22.
    Wild, M.: The joy of implications, aka pure horn formulas: mainly a survey. Theor. Comput. Sci. 658, 264–292 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.LIMOS, Université Clermont AuvergneAubièreFrance

Personalised recommendations