Advertisement

Sampling Representation Contexts with Attribute Exploration

  • Victor CodocedoEmail author
  • Jaume Baixeries
  • Mehdi Kaytoue
  • Amedeo Napoli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11511)

Abstract

We tackle the problem of constructing the representation context of a pattern structure. First, we present a naive algorithm that computes the representation context a pattern structure. Then, we add a sampling technique in order to reduce the size of the output. We show that these techniques reduce significantly the size of the representation context for interval pattern structures.

Notes

Acknowledgments

This research work has been supported by the recognition of 2017SGR-856 (MACDA) from AGAUR (Generalitat de Catalunya), and the grant TIN2017-89244-R from MINECO (Ministerio de Economía y Competitividad).

References

  1. 1.
    Baixeries, J., Kaytoue, M., Napoli, A.: Characterizing functional dependencies in formal concept analysis with pattern structures. Ann. Math. Artif. Intell. 72(1–2), 129–149 (2014)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bazin, A.: Comparing algorithms for computing lower covers of implication-closed sets. In: Proceedings of the Thirteenth International Conference on Concept Lattices and Their Applications, Moscow, Russia, 18–22 July 2016, pp. 21–31 (2016)Google Scholar
  3. 3.
    Buzmakov, A.: Formal concept analysis and pattern structures for mining structured data. Ph.D. thesis, University of Lorraine, Nancy, France (2015)CrossRefGoogle Scholar
  4. 4.
    Erdös, P., Kleitman, D.J.: Extremal problems among subsets of a set. Discrete Math. 306(10–11), 923–931 (2006)CrossRefGoogle Scholar
  5. 5.
    Ganter, B., Obiedkov, S.: Conceptual Exploration. Springer, Berlin (2016).  https://doi.org/10.1007/978-3-662-49291-8CrossRefzbMATHGoogle Scholar
  6. 6.
    Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Berlin (1999).  https://doi.org/10.1007/978-3-642-59830-2CrossRefzbMATHGoogle Scholar
  7. 7.
    Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS-ConceptStruct 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44583-8_10CrossRefGoogle Scholar
  8. 8.
    Kaytoue, M., Codocedo, V., Buzmakov, A., Baixeries, J., Kuznetsov, S.O., Napoli, A.: Pattern structures and concept lattices for data mining and knowledge processing. In: Bifet, A., et al. (eds.) ECML PKDD 2015. LNCS (LNAI), vol. 9286, pp. 227–231. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23461-8_19CrossRefGoogle Scholar
  9. 9.
    Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Revisiting numerical pattern mining with formal concept analysis. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 1342–1347. IJCAI/AAAI (2011)Google Scholar
  10. 10.
    Kuznetsov, S.O.: Pattern structures for analyzing complex data. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS (LNAI), vol. 5908, pp. 33–44. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10646-0_4CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Victor Codocedo
    • 1
    Email author
  • Jaume Baixeries
    • 3
  • Mehdi Kaytoue
    • 2
  • Amedeo Napoli
    • 4
  1. 1.Departamento de InformáticaUniversidad Técnica Federico Santa MaríaSantiagoChile
  2. 2.Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205LyonFrance
  3. 3.Computer Science DepartmentUniversitat Politècnica de CatalunyaBarcelona, CataloniaSpain
  4. 4.Université de Lorraine, CNRS, Inria, LORIANancyFrance

Personalised recommendations