Advertisement

A Relational Extension of Galois Connections

  • Inma P. Cabrera
  • Pablo Cordero
  • Emilio Muñoz-Velasco
  • Manuel Ojeda-AciegoEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11511)

Abstract

In this paper, we focus on a twofold relational generalization of the notion of Galois connection. It is twofold because it is defined between sets endowed with arbitrary transitive relations and, moreover, both components of the connection are relations as well. Specifically, we introduce the notion of relational Galois connection between two transitive digraphs, study some of its properties and its relationship with other existing approaches in the literature.

References

  1. 1.
    Abramsky, S.: Big toy models: representing physical systems as Chu spaces. Synthese 186(3), 697–718 (2012)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Antoni, L., Krajči, S., Krídlo, O.: Representation of fuzzy subsets by Galois connections. Fuzzy Sets Syst. 326, 52–68 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cabrera, I.P., Cordero, P., García-Pardo, F., Ojeda-Aciego, M., De Baets, B.: On the construction of adjunctions between a fuzzy preposet and an unstructured set. Fuzzy Sets Syst. 320, 81–92 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cabrera, I.P., Cordero, P., García-Pardo, F., Ojeda-Aciego, M., De Baets, B.: Adjunctions between a fuzzy preposet and an unstructured set with underlying fuzzy equivalence relations. IEEE Trans. Fuzzy Syst. 26(3), 1274–1287 (2018)CrossRefGoogle Scholar
  5. 5.
    Cabrera, I.P., Cordero, P., Ojeda-Aciego, M.: Relation-based Galois connections: towards the residual of a relation. In: Proceedings of Computational and Mathematical Methods in Science and Engineering (CMMSE 2017) (2017)Google Scholar
  6. 6.
    Denniston, J.T., Melton, A., Rodabaugh, S.E.: Formal contexts, formal concept analysis, and Galois connections. Electr. Proc. Theor. Comput. Sci. 129, 105–120 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Domenach, F., Leclerc, B.: Biclosed binary relations and Galois connections. Order 18(1), 89–104 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999).  https://doi.org/10.1007/978-3-642-59830-2CrossRefzbMATHGoogle Scholar
  9. 9.
    Ganter, B.: Relational Galois connections. In: Kuznetsov, S.O., Schmidt, S. (eds.) ICFCA 2007. LNCS (LNAI), vol. 4390, pp. 1–17. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70901-5_1CrossRefGoogle Scholar
  10. 10.
    García-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M.: On Galois connections and soft computing. In: Rojas, I., Joya, G., Cabestany, J. (eds.) IWANN 2013. LNCS, vol. 7903, pp. 224–235. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38682-4_26CrossRefGoogle Scholar
  11. 11.
    García-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M.: On closure systems and adjunctions between fuzzy preordered sets. In: Baixeries, J., Sacarea, C., Ojeda-Aciego, M. (eds.) ICFCA 2015. LNCS (LNAI), vol. 9113, pp. 114–127. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19545-2_7CrossRefGoogle Scholar
  12. 12.
    García-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M., Rodríguez-Sanchez, F.J.: On the existence of isotone Galois connections between preorders. In: Glodeanu, C.V., Kaytoue, M., Sacarea, C. (eds.) ICFCA 2014. LNCS (LNAI), vol. 8478, pp. 67–79. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07248-7_6CrossRefGoogle Scholar
  13. 13.
    García, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M., Rodriguez, F.: On the definition of suitable orderings to generate adjunctions over an unstructured codomain. Inf. Sci. 286, 173–187 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jeřábek, E.: Galois connection for multiple-output operations. Algebra Univers. 79, 17 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Krídlo, O., Ojeda-Aciego, M.: Formal concept analysis and structures underlying quantum logics. In: Medina, J., et al. (eds.) IPMU 2018. CCIS, vol. 853, pp. 574–584. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91473-2_49CrossRefGoogle Scholar
  16. 16.
    Krídlo, O., Ojeda-Aciego, M.: Relating Hilbert-Chu correspondences and big toy models for quantum mechanics. In: Kóczy, L., Medina-Moreno, J., Ramírez-Poussa, E., Šostak, A. (eds.) Computational Intelligence and Mathematics for Tackling Complex Problems. SCI, vol. 819, pp. 75–80. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-16024-1_10CrossRefGoogle Scholar
  17. 17.
    Ore, O.: Galois connexions. Trans. Am. Math. Soc. 55(3), 493–513 (1944)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wille, R.: Subdirect product constructions of concept lattices. Discrete Math. 63, 305–313 (1987)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Xia, W.: Morphismen als formale Begriffe-Darstellung und Erzeugung. Verlag Shaker, Aachen (1993)zbMATHGoogle Scholar
  20. 20.
    Zhang, G.-Q.: Logic of Domains. Springer, Boston (1991).  https://doi.org/10.1007/978-1-4612-0445-9CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Inma P. Cabrera
    • 1
  • Pablo Cordero
    • 1
  • Emilio Muñoz-Velasco
    • 1
  • Manuel Ojeda-Aciego
    • 1
    Email author
  1. 1.Dept. Matemática AplicadaUniversidad de MálagaMálagaSpain

Personalised recommendations