Advertisement

Concept Lattices as a Search Space for Graph Compression

  • Lucas BourneufEmail author
  • Jacques NicolasEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11511)

Abstract

Because of the increasing size and complexity of available graph structures in experimental sciences like molecular biology, techniques of graph visualization tend to reach their limit. To assist experimental scientists into the understanding of the underlying phenomena, most visualization methods are based on the organization of edges and nodes in clusters. Among recent ones, Power Graph Analysis is a lossless compression of the graph based on the search of cliques and bicliques, improving the readability of the overall structure. Royer et al. introduced a heuristic approach providing approximate solutions to this NP-complete problem. Later, Bourneuf et al. formalized the heuristic using Formal Concept Analysis. This paper proposes to extend this work by a formalization of the graph compression search space. It shows that (1) the heuristic cannot always achieve an optimal compression, and (2) the concept lattice associated to a graph enables a more complete exploration of the search space. Our conclusion is that the search for graph compression can be usefully associated with the search for patterns in the concept lattice and that, conversely, confusing sets of objects and attributes brings new interesting problems for FCA.

Keywords

Concept lattice Search space formalization Graph Visualization 

References

  1. 1.
    Ahnert, S.E.: Generalised power graph compression reveals dominant relationship patterns in complex networks. Sci. Rep. 4, 4385 (2014)CrossRefGoogle Scholar
  2. 2.
    Bourneuf, L., Nicolas, J.: FCA in a logical programming setting for visualization-oriented graph compression. In: Bertet, K., Borchmann, D., Cellier, P., Ferré, S. (eds.) ICFCA 2017. LNCS (LNAI), vol. 10308, pp. 89–105. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59271-8_6CrossRefGoogle Scholar
  3. 3.
    Chiaselotti, G., Ciucci, D., Gentile, T.: Simple undirected graphs as formal contexts. In: Baixeries, J., Sacarea, C., Ojeda-Aciego, M. (eds.) ICFCA 2015. LNCS (LNAI), vol. 9113, pp. 287–302. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19545-2_18zbMATHCrossRefGoogle Scholar
  4. 4.
    Dwyer, T., Riche, N.H., Marriott, K., Mears, C.: Edge compression techniques for visualization of dense directed graphs. IEEE Trans. Vis. Comput. Graph. 19(12), 2596–2605 (2013)CrossRefGoogle Scholar
  5. 5.
    Dwyer, T., Mears, C., Morgan, K., Niven, T., Marriott, K., Wallace, M.: Improved optimal and approximate power graph compression for clearer visualisation of dense graphs. CoRR, abs/1311.6996 (2013)Google Scholar
  6. 6.
    Gagneur, J., Krause, R., Bouwmeester, T., Casari, G.: Modular decomposition of protein-protein interaction networks. Genome Biol. 5(8), R57 (2004)CrossRefGoogle Scholar
  7. 7.
    Habib, M., Paul, C.: A survey of the algorithmic aspects of modular decomposition. Comput. Sci. Rev. 4(1), 41–59 (2010)zbMATHCrossRefGoogle Scholar
  8. 8.
    Bernard, J., Seba, H.: Solving the maximal clique problem on compressed graphs. In: Ceci, M., Japkowicz, N., Liu, J., Papadopoulos, G.A., Raś, Z.W. (eds.) ISMIS 2018. LNCS (LNAI), vol. 11177, pp. 45–55. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01851-1_5CrossRefGoogle Scholar
  9. 9.
    King, A.D., Pržulj, N., Jurisica, I.: Protein complex prediction via cost-based clustering. Bioinformatics 20(17), 3013–3020 (2004)CrossRefGoogle Scholar
  10. 10.
    Navlakha, S., Schatz, M.C., Kingsford, C.: Revealing biological modules via graph summarization. J. Comput. Biol. 16(2), 253–264 (2009)CrossRefGoogle Scholar
  11. 11.
    Ogata, H., Fujibuchi, W., Goto, S., Kanehisa, M.: A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters. Nucleic Acids Res. 28(20), 4021–4028 (2000)CrossRefGoogle Scholar
  12. 12.
    Papadopoulos, C., Voglis, C.: Drawing graphs using modular decomposition. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 343–354. Springer, Heidelberg (2006).  https://doi.org/10.1007/11618058_31zbMATHCrossRefGoogle Scholar
  13. 13.
    Royer, L., Reimann, M., Andreopoulos, B., Schroeder, M.: Unraveling protein networks with power graph analysis. PLoS Comput. Biol. 4(7), e1000108 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Serafino, P.: Speeding up graph clustering via modular decomposition based compression. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing, SAC 2013, pp. 156–163. ACM, New York (2013)Google Scholar
  15. 15.
    Tsatsaronis, G., Reimann, M., Varlamis, I., Gkorgkas, O., Nørvåg, K.: Efficient community detection using power graph analysis. In: Proceedings of the 9th Workshop on Large-scale and Distributed Informational Retrieval, LSDS-IR 2011, pp. 21–26. ACM, New York (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Univ Rennes 1, Campus de BeaulieuRennes cedexFrance

Personalised recommendations