Using Redescriptions and Formal Concept Analysis for Mining Definitions in Linked Data

  • Justine ReynaudEmail author
  • Yannick Toussaint
  • Amedeo Napoli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11511)


In this article, we compare the use of Redescription Mining (RM) and Association Rule Mining (ARM) for discovering class definitions in Linked Open Data (LOD). RM is aimed at mining alternate descriptions from two datasets related to the same set of individuals. We reuse RM for providing category definitions in DBpedia in terms of necessary and sufficient conditions (NSC). Implications and AR can be jointly used for mining category definitions still in terms of NSC. In this paper, we firstly, recall the basics of redescription mining and make precise the principles of definition discovery. Then we detail a series of experiments carried out on datasets extracted from DBpedia. We analyze the different outputs related to RM and ARM applications, and we discuss the strengths and limitations of both approaches. Finally, we point out possible improvements of the approaches.


Redescription Mining Association Rule Mining Concept Analysis Linked Open Data Definition of categories 


  1. 1.
    Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. ACM SIGMOD Rec. 22(2), 207–216 (1993)CrossRefGoogle Scholar
  2. 2.
    Alam, M., Buzmakov, A., Codocedo, V., Napoli, A.: Mining definitions from RDF annotations using formal concept analysis. In: IJCAI, pp. 823–829 (2015)Google Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  4. 4.
    Ferré, S., Cellier, P.: Graph-FCA in practice. In: Proceedings of 22nd ICCS, pp. 107–121 (2016)CrossRefGoogle Scholar
  5. 5.
    Ferré, S., Ridoux, O.: A logical generalizationof formal concept analysis. In: Ganter, B., Mineau, G.W. (eds.) Conceptual Structures: Logical, Linguistic, and Computational Issues, pp. 371–384. Springer, Heidelberg (2000). Scholar
  6. 6.
    Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.M.: AMIE: association rule mining under incomplete evidence in ontological knowledge bases. In: WWW 2013, pp. 413–422 (2013)Google Scholar
  7. 7.
    Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE\(+\). VLDB J. 24(6), 707–730 (2015)CrossRefGoogle Scholar
  8. 8.
    Galbrun, E., Miettinen, P.: Siren: an interactive tool for mining and visualizing geospatial redescriptions. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD 2012, pp. 1544–1547. ACM (2012)Google Scholar
  9. 9.
    Galbrun, E., Miettinen, P.: Redescription Mining. SCS. Springer, Cham (2017). Scholar
  10. 10.
    Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS-ConceptStruct 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001). Scholar
  11. 11.
    Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999). Scholar
  12. 12.
    Kaytoue, M., Marcuola, F., Napoli, A., Szathmary, L., Villerd, J.: The coron system. In: Boumedjout, L., Valtchev, P., Kwuida, L., Sertkaya, B. (eds.) 8th International Conference on Formal Concept Analsis (ICFCA) - Supplementary Proceedings, pp. 55–58 (2010). (demo paper).
  13. 13.
    Kirchberg, M., Leonardi, E., Tan, Y.S., Link, S., Ko, R.K.L., Lee, B.S.: Formal concept discovery in semantic web data. In: Domenach, F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS (LNAI), vol. 7278, pp. 164–179. Springer, Heidelberg (2012). Scholar
  14. 14.
    Klemettinen, M., Mannila, H., Ronkainen, P., Toivonen, H., Verkamo, A.I.: Finding interesting rules from large sets of discovered association rules. In: CIKM 1994, pp. 401–407 (1994)Google Scholar
  15. 15.
    Lajus, J., Suchanek, F.M.: Are all people married? Determining obligatory attributes in knowledge bases. In: International Conference WWW, Lyon, France (2018)Google Scholar
  16. 16.
    van Leeuwen, M., Galbrun, E.: Association discovery in two-view data. TKDE 27(12), 3190–3202 (2015)Google Scholar
  17. 17.
    Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)Google Scholar
  18. 18.
    Ramakrishnan, N., Kumar, D., Mishra, B., Potts, M., Helm, R.F.: Turning CARTwheels: an alternating algorithm for mining redescriptions. In: KDD 2004, pp. 266–275 (2004)Google Scholar
  19. 19.
    Reynaud, J., Toussaint, Y., Napoli, A.: Three approaches for mining definitions from relational data in the web of data. In: Proceedings of the 6th International Workshop FC4AI (co-located with IJCAI/ECAI). CEUR Proceedings vol. 2149, pp. 21–32 (2018)Google Scholar
  20. 20.
    Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., et al. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011). Scholar
  21. 21.
    Zaki, M.J.: Scalable algorithms for association mining. TKDE 12(3), 372–390 (2000)Google Scholar
  22. 22.
    Zneika, M., Lucchese, C., Vodislav, D., Kotzinos, D.: RDF graph summarization based on approximate patterns. In: Grant, E., Kotzinos, D., Laurent, D., Spyratos, N., Tanaka, Y. (eds.) ISIP 2015. CCIS, vol. 622, pp. 69–87. Springer, Cham (2016). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Justine Reynaud
    • 1
    Email author
  • Yannick Toussaint
    • 1
  • Amedeo Napoli
    • 1
  1. 1.Université de Lorraine, CNRS, Inria, LORIANancyFrance

Personalised recommendations