Advertisement

Parallelization of the GreConD Algorithm for Boolean Matrix Factorization

  • Petr KrajčaEmail author
  • Martin Trnecka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11511)

Abstract

Boolean matrix factorization (BMF) is a well established and widely used tool for data analysis. Vast majority of existing algorithms for BMF is based on some greedy strategy which makes them highly sequential, thus unsuited for parallel execution. We propose a parallel variant of well-known BMF algorithm—GreConD, which is able to distribute workload among multiple parallel threads, hence can benefit from modern multicore CPUs. The proposed algorithm is based on formal concept analysis, intended for shared memory computers, and significantly reducing computation time of BMF via parallel execution.

Keywords

Boolean matrix factorization Parallel algorithm GreConD Formal concept analysis 

References

  1. 1.
    Andrews, G.R.: Foundations of Multithreaded, Parallel, and Distributed Programming. Addison-Wesley, Reading (2002)Google Scholar
  2. 2.
    Belohlavek, R., Outrata, J., Trnecka, M.: Toward quality assessment of Boolean matrix factorizations. Inf. Sci. 459, 71–85 (2018).  https://doi.org/10.1016/j.ins.2018.05.016MathSciNetCrossRefGoogle Scholar
  3. 3.
    Belohlavek, R., Trnecka, M.: From-below approximations in Boolean matrix factorization: geometry and new algorithm. J. Comput. Syst. Sci. 81(8), 1678–1697 (2015).  https://doi.org/10.1016/j.jcss.2015.06.002MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Belohlavek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel method of matrix decomposition. J. Comput. Syst. Sci. 76(1), 3–20 (2010).  https://doi.org/10.1016/j.jcss.2009.05.002MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ene, A., Horne, W.G., Milosavljevic, N., Rao, P., Schreiber, R., Tarjan, R.E.: Fast exact and heuristic methods for role minimization problems. In: Ray, I., Li, N. (eds.) 13th ACM Symposium on Access Control Models and Technologies, SACMAT 2008, Estes Park, CO, USA, 11–13 June 2008, Proceedings, pp. 1–10. ACM (2008).  https://doi.org/10.1145/1377836.1377838
  6. 6.
    Ganter, B., Wille, R.: Formal Concept Analysis Mathematical Foundations. Springer, Heidelberg (1999).  https://doi.org/10.1007/978-3-642-59830-2CrossRefzbMATHGoogle Scholar
  7. 7.
    Kannan, R., Ballard, G., Park, H.: A high-performance parallel algorithm for nonnegative matrix factorization. SIGPLAN Not. 51(8), 9:1–9:11 (2016).  https://doi.org/10.1145/3016078.2851152CrossRefGoogle Scholar
  8. 8.
    Krajca, P., Outrata, J., Vychodil, V.: Advances in algorithms based on CbO. In: Kryszkiewicz, M., Obiedkov, S.A. (eds.) Proceedings of the 7th International Conference on Concept Lattices and Their Applications, Sevilla, Spain, 19–21 October 2010. CEUR Workshop Proceedings, vol. 672, pp. 325–337. CEUR-WS.org (2010)Google Scholar
  9. 9.
    Kuznetsov, S.O.: Learning of simple conceptual graphs from positive and negative examples. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 384–391. Springer, Heidelberg (1999).  https://doi.org/10.1007/978-3-540-48247-5_47CrossRefGoogle Scholar
  10. 10.
    Lucchese, C., Orlando, S., Perego, R.: A unifying framework for mining approximate top-k binary patterns. IEEE Trans. Knowl. Data Eng. 26(12), 2900–2913 (2014).  https://doi.org/10.1109/TKDE.2013.181CrossRefGoogle Scholar
  11. 11.
    Miettinen, P., Mielikäinen, T., Gionis, A., Das, G., Mannila, H.: The discrete basis problem. IEEE Trans. Knowl. Data Eng. 20(10), 1348–1362 (2008).  https://doi.org/10.1109/TKDE.2008.53CrossRefGoogle Scholar
  12. 12.
    Outrata, J., Trnecka, M.: Parallel exploration of partial solutions in Boolean matrix factorization. J. Parallel Distrib. Comput. 123, 180–191 (2019).  https://doi.org/10.1016/j.jpdc.2018.09.014CrossRefGoogle Scholar
  13. 13.
    Stockmeyer, L.J.: The Set Basis Problem is NP-complete. Research reports, IBM Thomas J. Watson Research Division (1975)Google Scholar
  14. 14.
    Tatti, N., Mielikäinen, T., Gionis, A., Mannila, H.: What is the dimension of your binary data? In: Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006), Hong Kong, China, 18–22 December 2006, pp. 603–612. IEEE Computer Society (2006).  https://doi.org/10.1109/ICDM.2006.167
  15. 15.
    Xiang, Y., Jin, R., Fuhry, D., Dragan, F.F.: Summarizing transactional databases with overlapped hyperrectangles. Data Min. Knowl. Discov. 23(2), 215–251 (2011).  https://doi.org/10.1007/s10618-010-0203-9MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Computer SciencePalacký University OlomoucOlomoucCzech Republic

Personalised recommendations