Advertisement

Evolving Fuzzy Membership Functions for Soft Skills Assessment Optimization

  • Antonia Azzini
  • Stefania MarraraEmail author
  • Amir Topalović
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1027)

Abstract

This work proposes the design of a decision support tool able to guide the choices of any company HR manager in the evaluation of the profiles of PhD candidates. This paper is part of an ongoing research in the field of PhD profiling. The novelty here is an evolutionary fuzzy model, based on the Membership Functions (MFs) optimization, used to obtain the soft skills candidate profiles. The general aim of the project is the definition of a set of fuzzy rules that are very similar to those that a HR expert would otherwise have to calculate each time for each selected profile and for each individual skill.

Keywords

Fuzzy logic Evolutionary algorithms Membership function optimization 

References

  1. 1.
    Adhikari, D., Kim, E., Reza, H.: A fuzzy adaptive differential evolution for multi-objective 3D uav path optimization. In: Proceedings of the IEEE Conference on Evolutionary Computation (CEC), June 2017Google Scholar
  2. 2.
    Azzini, A., Galimberti, A., Marrara, S., Ratti, E.: A taxonomy of researchers soft skills (2017)Google Scholar
  3. 3.
    Azzini, A., Galimberti, A., Marrara, S., Ratti, E.: A classifier to identify soft skills in a researcher textual description. In: Sim, K., Kaufmann, P. (eds.) EvoApplications 2018. LNCS, vol. 10784, pp. 538–546. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-77538-8_37CrossRefGoogle Scholar
  4. 4.
    Azzini, A., Galimberti, A., Marrara, S., Ratti, E.: SOON: supporting the evaluation of researchers’ profiles. In: Uden, L., Hadzima, B., Ting, I.-H. (eds.) KMO 2018. CCIS, vol. 877, pp. 3–14. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-95204-8_1CrossRefGoogle Scholar
  5. 5.
    Azzini, A., Marrara, S., Topalovic, A.: A neuro-fuzzy approach to assess the soft skills profile of a PhD. In: Fullér, R., Giove, S., Masulli, F. (eds.) WILF 2018. LNCS (LNAI), vol. 11291, pp. 134–147. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-12544-8_11CrossRefGoogle Scholar
  6. 6.
    Box, S.: Transferable skills training for researchers supporting career development and research: supporting career development and research. OECD Publishing (2012)Google Scholar
  7. 7.
    Herrera, F.: Genetic fuzzy systems: status, critical considerations and future directions. Int. J. Comput. Intell. Res. 1(1), 59–67 (2005)CrossRefGoogle Scholar
  8. 8.
    Kaya, M., Alhajj, R.: Utilizing genetic algorithms to optimize membership functions for fuzzy weighted association rules mining. Appl. Intell. 24(1), 7–15 (2006)CrossRefGoogle Scholar
  9. 9.
    Kroeske, J., Ghandar, A., Michalewicz, Z., Neumann, F.: Learning fuzzy rules with evolutionary algorithms—an analytic approach. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 1051–1060. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87700-4_104CrossRefGoogle Scholar
  10. 10.
    Kumar, S., Kumari, R., Sharma, V.: Adaptive neural fuzzy inference system for employability assessment. Int. J. Comput. Appl. Technol. Res 3, 159–164 (2014)Google Scholar
  11. 11.
    Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML, vol. 1, pp. 282–289 (2001)Google Scholar
  12. 12.
    Lee, I.: Modeling the benefit of e-recruiting process integration. Decis. Support Syst. 51(1), 230–239 (2011)CrossRefGoogle Scholar
  13. 13.
    Mankad, K., Sajja, P., Akerkar, R.: Evolving rules using genetic fuzzy approach - an educational case study. Int. J. Soft Comput. IJSC 2(1), 35–44 (2011)CrossRefGoogle Scholar
  14. 14.
    Mudholkar, R., Somnatti, V.: Genetic tuning of fuzzy inference system for furnace temperature controller. Int. J. Comput. Sci. Inf. Technol. 6(4), 3496–3500 (2015)Google Scholar
  15. 15.
    Santika, G., Mahmudy, W., Naba, A.: Rule optimization of fuzzy inference system sugeno using evolution strategy for electricity consumption forecasting. Int. J. Electr. Comput. Eng. 7, 2241–2252 (2017)Google Scholar
  16. 16.
    Singh, A., Rose, C., Visweswariah, K., Chenthamarakshan, V., Kambhatla, N.: PROSPECT: a system for screening candidates for recruitment. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 659–668. ACM (2010)Google Scholar
  17. 17.
    Vorachart, V., Takagi, H.: Evolving fuzzy logic rule-based game player model for game development. Int. J. Innov. Comput. Inf. Control 13(6), 1941–1951 (2017)Google Scholar
  18. 18.
    Yi, X., Allan, J., Croft, W.B.: Matching resumes and jobs based on relevance models. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 809–810. ACM (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Antonia Azzini
    • 1
  • Stefania Marrara
    • 1
    Email author
  • Amir Topalović
    • 1
  1. 1.Consortium for the Technology Transfer (C2T)Carate BrianzaItaly

Personalised recommendations