Routing Protocols in Vehicular Ad-Hoc Networks: A Performance Evaluation

  • Raúl Lozada-YánezEmail author
  • Washington Luna-Encalada
  • Danni Tierra-Quispillo
  • Fernando Molina-Granja
  • Jonny Guaiña-Yungan
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1027)


The presented article evaluates the routing protocols in connected Vehicular Ad-Hoc Networks (VANET) through 802.11p considering synthetic mobility models and vehicular traffic generators, Manhattan and Intelligent Driver Mobility (IDM) models were selected respectively. The following programs were installed on a Linux-based system to simulate the scenarios: SUMO for the traffic management, NS-2 for simulating the data network and MOVE for exporting the information from SUMO to NS-2. Proactive and reactive routing protocols classification was considered, to subsequently apply the DSDV and AOMDV protocols that proved to have better performance. In the simulated scenarios, a low, medium and high number of connections were used with two communication types: Vehicle to vehicle (V2V) and Vehicle to infrastructure (V2I) for VANET networks. The indicators that were analyzed to determine the performance of the protocols were Throughput, Packet delivery ratio relationship (PDR), Average End to End Delay and Normalized routing load (NRL). The study was found that for V2V communications, regardless of the connections or the mobility model, AOMDV or DSDV can be used since the difference in performance is minimal. The results indicate that the best protocol is AOMDV with a superiority to DSDV in most cases. It is concluded that the model closest to reality is IDM since it is based on a traffic generator while the Manhattan model, based on mathematical formulas offers ambiguous results.


Vanet Routing Mobility model Vehicular traffic Linux 


  1. 1.
    Guevara, D., Chávez, I., Calderón, O.: Impacto del enrutamiento en el desempeño de la comunicación de datos en una red VANET. Puente 9(1), 23–30 (2017)Google Scholar
  2. 2.
    Das, A., Roychoudhury, D.: Authentication schemes for VANETs: a survey. Int. J. Veh. Inf. Commun. Syst. 3(1), 1–27 (2013)Google Scholar
  3. 3.
    Bhatt, R., Sharma, I.: Prediction based next-hop forwarding strategy in vehicular ad hoc networks. Int. J. Veh. Inf. Commun. Syst. 4(1), 1–19 (2019)Google Scholar
  4. 4.
    Toutouh, J., García-Nieto, J., Alba, E.: Configuración Óptima del Protocolo de Encaminamiento OLSR para VANETs Mediante Evolución Diferencial. In: VII Congr. Sobre Metaheurísticas Algoritmos Evolutivos Bioinspirados (MAEB’10), Valencia-Spain, pp. 463–471 (2010)Google Scholar
  5. 5.
    Pinto, G., Sarmiento, D., Martínez, L.: Simulación y análisis de desempeño de protocolos unicast para Redes VANET. Tecnura: Tecnología y Cultura Afirmando El Conocimiento 15(31), 66–75 (2011)Google Scholar
  6. 6.
    Fuentes Salazar, E., Valencia Enríquez, A.: Estudio de las Vanet para Control de los Vehículos en las Carreteras en el Ecuador. Tesis, Escuela Superior Politécnica de Chimborazo (2015)Google Scholar
  7. 7.
    Bradner, S.: Benchmarking terminology for network interconnection devices. Accessed 20 Dec 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Raúl Lozada-Yánez
    • 1
    Email author
  • Washington Luna-Encalada
    • 1
  • Danni Tierra-Quispillo
    • 1
  • Fernando Molina-Granja
    • 2
  • Jonny Guaiña-Yungan
    • 1
  1. 1.Escuela Superior Politécnica de Chimborazo - Facultad de Informática y ElectrónicaRiobambaEcuador
  2. 2.Universidad Nacional de Chimborazo - Facultad de IngenieríaRiobambaEcuador

Personalised recommendations