Advertisement

The Future Use of LowCode/NoCode Platforms by Knowledge Workers – An Acceptance Study

  • Christian PloderEmail author
  • Reinhard Bernsteiner
  • Stephan Schlögl
  • Christoph Gschliesser
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1027)

Abstract

Knowledge Workers have to deal with lots of different information systems to support daily work. This assumption leads to massive gaps in companies based on the complexity of legacy systems on one hand side and the development of the business processes on the other hand side. Many knowledge workers build their own shadow IT to get efficient process support without thinking about compliance, security, and scalability. One possible solution to deactivate this situation might be the idea of LowCode/NoCode platforms. The question is: Will knowledge workers be using this technology or are they not accepting the new trend? Therefore, the authors conducted a quantitative study based on an online questionnaire (N = 106) to check the acceptance of this upcoming technology for companies in the DACH region. The result of the study is a statement about the future willingness to use.

Keywords

Knowledge workers LowCode/NoCode Platform Process support Shadow IT 

References

  1. 1.
    Maier, R., Hädrich, T., Peinl, R.: Enterprise Knowledge Infrastructures, 2nd edn. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-89768-2CrossRefGoogle Scholar
  2. 2.
    Maier, R.: Knowledge Management Systems: Information and Communication Technologies for Knowledge Management, 3rd edn. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71408-8CrossRefGoogle Scholar
  3. 3.
    Satell, G.: The Future of Software is No-Code (2018). https://www.inc.com/greg-satell/how-no-code-platforms-are-disrupting-software.html. Accessed 15 Dec 2018
  4. 4.
    Bloomberg, J.: The Low-Code/No-Code Movement: More Disruptive Than You Realize (2017). https://www.forbes.com/sites/jasonbloomberg/2017/07/20/the-low-codeno-code-movement-more-disruptive-than-you-realize/#16c5e355722a. Accessed 15 Dec 2018
  5. 5.
    Opitz, N., Langkau, T.F., Schmidt, N.H., Kolbe, L.M.: Technology acceptance of cloud computing: empirical evidence from German IT departments. In: Sprague, R.H. (ed.) 2012 45th Hawaii International Conference on System Science: (HICSS); USA, 4–7 January 2012, pp. 1593–1602. IEEE, Piscataway (2012).  https://doi.org/10.1109/HICSS.2012.557
  6. 6.
    Davis, F.D.: A technology acceptance model for empirically testing new end-user information systems: theory and results. Massachusetts Institute of Technology (1985)Google Scholar
  7. 7.
    Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13(3), 319 (1989).  https://doi.org/10.2307/249008CrossRefGoogle Scholar
  8. 8.
    Rosli, K., Yeow, P., Siew, E.-G.: Factors influencing audit technology acceptance by audit firms: a new I-TOE adoption framework. J. Acc. Auditing Res. Pract. 1–11 (2012).  https://doi.org/10.5171/2012.876814
  9. 9.
    Venkatesh, V., Davis, F.D.: A theoretical extension of the technology acceptance model: four longitudinal field studies. Manage. Sci. 46(2), 186–204 (2000).  https://doi.org/10.1287/mnsc.46.2.186.11926CrossRefGoogle Scholar
  10. 10.
    Thompson, R.L., Higgins, C.A., Howell, J.M.: Personal computing: toward a conceptual model of utilization. MIS Q. 15(1), 125 (1991).  https://doi.org/10.2307/249443CrossRefGoogle Scholar
  11. 11.
    Moore, G.C., Benbasat, I.: Development of an instrument to measure the perceptions of adopting an information technology innovation. Inf. Syst. Res. 2(3), 192–222 (1991).  https://doi.org/10.1287/isre.2.3.192CrossRefGoogle Scholar
  12. 12.
    Compeau, D.R., Higgins, C.A.: Computer self-efficacy: development of a measure and initial test. MIS Q. 19, 189–211 (1995)CrossRefGoogle Scholar
  13. 13.
    Venkatesh, V., Morris, M.G., Davis, G.B., Davis, F.D.: User acceptance of information technology: toward a unified view. MIS Q. 27(3), 425 (2003).  https://doi.org/10.2307/30036540CrossRefGoogle Scholar
  14. 14.
    Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: a comparison of two theoretical models. Manage. Sci. 35(8), 982–1003 (1989).  https://doi.org/10.1287/mnsc.35.8.982CrossRefGoogle Scholar
  15. 15.
    Taylor, S., Todd, P.A.: Understanding information technology usage: a test of competing models. Inf. Syst. Res. 6(2), 144–176 (1995).  https://doi.org/10.1287/isre.6.2.144CrossRefGoogle Scholar
  16. 16.
    Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: Extrinsic and intrinsic motivation to use computers in the workplace1. J. Appl. Soc. Psychol. 22(14), 1111–1132 (1992).  https://doi.org/10.1111/j.1559-1816.1992.tb00945.xCrossRefGoogle Scholar
  17. 17.
    Kelman, H.C.: Compliance, identification, and internalization three processes of attitude change. J. Conflict Resolut. 2(1), 51–60 (1958)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Reinhardt, W., Schmidt, B., Sloep, P., Drachsler, H.: Knowledge worker roles and actions – results of two empirical studies. Knowl. Process Manage. 18(3), 150–174 (2011).  https://doi.org/10.1002/kpm.378CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christian Ploder
    • 1
    Email author
  • Reinhard Bernsteiner
    • 1
  • Stephan Schlögl
    • 1
  • Christoph Gschliesser
    • 1
  1. 1.Management Center Innsbruck, Management, Communication & ITInnsbruckAustria

Personalised recommendations