Advertisement

Maths, Computation and Flamenco: Overview and Challenges

  • José-Miguel Díaz-BáñezEmail author
  • Nadine Kroher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11502)

Abstract

Flamenco is a rich performance-oriented art music genre from Southern Spain which attracts a growing community of aficionados around the globe. Due to its improvisational and expressive nature, its unique musical characteristics, and the fact that the genre is largely undocumented, flamenco poses a number of interesting mathematical and computational challenges. Most existing approaches in Musical Information Retrieval (MIR) were developed in the context of popular or classical music and do often not generalize well to non-Western music traditions, in particular when the underlying music theoretical assumptions do not hold for these genres. Over the recent decade, a number of computational problems related to the automatic analysis of flamenco music have been defined and several methods addressing a variety of musical aspects have been proposed. This paper provides an overview of the challenges which arise in the context of computational analysis of flamenco music and outlines an overview of existing approaches.

Keywords

Flamenco Computational ethnomusicology MIR 

References

  1. 1.
    Aichholzer, O., Caraballo, L.E., Díaz-Báñez, J.M., Fabila-Monroy, R., Ochoa, C., Nigsch, P.: Characterization of extremal antipodal polygons. Graphs Comb. 31(2), 321–333 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barba, L., Caraballo, L.E., Díaz-Báñez, J.M., Fabila-Monroy, R., Pérez-Castillo, E.: Asymmetric polygons with maximum area. Eur. J. Oper. Res. 248(3), 1123–1131 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bereg, S., Díaz-Báñez, J.M., Kroher, N., Ventura, I.: Computing melodic templates in oral music traditions. Appl. Math. Comput. 44(1), 219–229 (2019)MathSciNetGoogle Scholar
  4. 4.
    Caraballo, L.E., Díaz-Báñez, J.M., Pérez-Castillo, E.: Finding unknown nodes in phylogenetic graphs. In: Ortuño, F., Rojas, I. (eds.) IWBBIO 2015. LNCS, vol. 9043, pp. 403–414. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16483-0_40CrossRefGoogle Scholar
  5. 5.
    Chemillier, M., Truchet, C.: Computation of words satisfying the rhythmic oddity property (after Simha Arom’s works). Inf. Process. Lett. 86(5), 255–261 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    COFLA Homepage. http://www.cofla-project.com. Accessed 14 Mar 2019
  7. 7.
    Díaz-Báñez, J.M.: Mathematics and flamenco: an unexpected partnership. Math. Intell. 39(3), 27–39 (2017)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Díaz-Báñez, M., Farigu, G., Gómez, F., Rappaport, D., Toussaint, G.T.: El compás flamenco: a phylogenetic analysis. In: Proceedings of BRIDGES: Mathematical Connections in Art, Music and Science, pp. 61–70. Southwestern College, Winfield(2004)Google Scholar
  9. 9.
    Díaz-Báñez, J.M., Farigu, G., Gómez, F., Rappaport, D., Toussaint, G.T.: Similaridad y evolución en la rtmica del flamenco: una incursión de la matemática computacional. La Gaceta de la Real Sociedad Matemática Española 82, 489–509 (2005)Google Scholar
  10. 10.
    Díaz-Báñez, J.M., Kroher, N., Rizo, J.: Efficient algorithms for melodic similarity in flamenco singing. In: Proceedings of the 5th International Workshop on Folk Music Analysis (FMA), Paris, France (2015)Google Scholar
  11. 11.
    Díaz-Báñez, J.M., Rizo, J.C.: An efficient DTW-based approach for melodic similarity in flamenco singing. In: Traina, A.J.M., Traina, C., Cordeiro, R.L.F. (eds.) SISAP 2014. LNCS, vol. 8821, pp. 289–300. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11988-5_27CrossRefGoogle Scholar
  12. 12.
    Gómez, E., Bonada, J.: Towards computer-assisted flamenco transcription: an experimental comparison of automatic transcription algorithms as applied to a cappella singing. Comput. Music J. 37(2), 73–90 (2013)CrossRefGoogle Scholar
  13. 13.
    Gómez, E., Bonada, J., Salamon, J.: Automatic transcription of flamenco singing from monophonic and polyphonic music recordings. In: Proceedings of the III Interdisciplinary Conference on Flamenco Research (INFLA) and II International Workshop of Folk Music Analysis (FMA), Seville, Spain (2012)Google Scholar
  14. 14.
    Guastavino, C., Gómez, F., Toussaint, G., Marandola, F., Gómez, E.: Measuring similarity between flamenco rhythmic patterns. J. New Music Res. 38(2), 129–138 (2009)CrossRefGoogle Scholar
  15. 15.
    Han, Y., Kim, J., Lee, K., Han, Y., Kim, J., Lee, K.: Deep convolutional neural networks for predominant instrument recognition in polyphonic music. IEEE/ACM Trans. Audio Speech Lang. Process. 25(1), 208–221 (2017)CrossRefGoogle Scholar
  16. 16.
    Kroher, N.: Flamenco music information retrieval. Ph.D. thesis, Universidad de Sevilla (2018)Google Scholar
  17. 17.
    Kroher, N., Díaz-Báñez, J.M.: Audio-based melody categorisation: exploring signal representations and evaluation strategies. Comput. Music J. 41(4), 1–19 (2017)Google Scholar
  18. 18.
    Kroher, N., Díaz-Báñez, J.M., Mora, J., Gómez, E.: Corpus COFLA: a research corpus for the computational study of flamenco music. J. Comput. Cult. Herit. 9(2), 10–21 (2016)CrossRefGoogle Scholar
  19. 19.
    Kroher, N., Díaz-Báñez, J.M.: Modelling melodic variation and extracting melodic templates from flamenco singing performances. J. Math. Music (2019, to appear)Google Scholar
  20. 20.
    Kroher, N., Pikrakis, A., Moreno, J., Díaz-Báñez, J.M.: Discovery of repeated vocal patterns in polyphonic audio: a case study on flamenco music. In: Proceedings of 23rd European Signal Processing Conference (EUSIPCO), Nice, France, pp. 41–45. IEEE (2015)Google Scholar
  21. 21.
    Kroher, N., Pikrakis, A., Díaz-Báñez, J.M.: Discovery of repeated melodic phrases in folk singing recordings. IEEE Trans. Multimed. 20(6), 1291–1304 (2018)CrossRefGoogle Scholar
  22. 22.
    Kroher, N., Gómez, E.: Automatic transcription of flamenco singing from polyphonic music recordings. IEEE Trans. Audio Speech Lang. Process. 24(5), 901–913 (2016)CrossRefGoogle Scholar
  23. 23.
    Montiel, M., Peck, R.W.: Mathematical Music Theory: Algebraic, Geometric, Combinatorial, Topological and Applied Approaches to Understanding Musical Phenomena. World Scientific Publishing, London (2018)CrossRefGoogle Scholar
  24. 24.
    Mora, J., Gómez, F., Gómez, E., Díaz-Báñez, J.M.: Melodic contour and mid-level global features applied to the analysis of flamenco cantes. J. New Music Res. 45(2), 145–159 (2016)CrossRefGoogle Scholar
  25. 25.
    Mora, J., Gómez, F., Gómez, E., Escobar, F.J., Díaz-Báñez, J.M.: Characterization and melodic similarity of a cappella flamenco cantes. In: Proceedings of the 11th Conference of the International Society for Music Information (ISMIR), Utrecht, Holland (2010)Google Scholar
  26. 26.
    Oramas, S., Gómez, F., Gómez, E., Mora, J.: FlaBase: towards the creation of a flamenco music knowledge base. In: Proceedings 16th International Society for Music Information Retrieval Conference (ISMIR), Málaga, Spain (2015)Google Scholar
  27. 27.
    Pikrakis, A., et al.: Tracking melodic patterns in flamenco singing by analyzing polyphonic recordings. In: Proceedings of the 13th Conference of the International Society for Music Information Retrieval, ISMIR, Porto, Portugal (2012)Google Scholar
  28. 28.
    Pikrakis, A., Kroher, N., Díaz-Báñez, J.M.: Detection of melodic patterns in automatic flamenco transcriptions. In: Proceedings of the 6th International Workshop on Folk Music Analysis (FMA), pp. 14–17 (2016)Google Scholar
  29. 29.
    Schluter, J., Bock, S.: Improved musical onset detection with convolutional neural networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing ICASSP, Florence, Italy, pp. 6979–6983 (2014)Google Scholar
  30. 30.
    Van den Oord, A., Dieleman, S., Schrauwen, B.: Deep content-based music recommendation. In: Advances in Neural Information Processing Systems (NIPS), pp. 2643–2651 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Matemática Aplicada IIUniversidad de SevillaSevilleSpain
  2. 2.MXXLondonUK

Personalised recommendations