Advertisement

Maximally Even Tilings

  • Jeremy KastineEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11502)

Abstract

Rhythmic tiling canons tend to feature highly regular, periodic rhythms which, from a musical standpoint, can be quite monotonous and lacking in character. Allowing for “holes”, we can compose “partial tiling canons” that feature more irregular/interesting rhythms. In this paper, we will investigate the construction of partial tiling canons in which the composite rhythm is maximally even.

Keywords

Tiling Maximally even sets Canon Music composition 

References

  1. 1.
  2. 2.
    Perspect. New Music 49(2) (2011). http://www.perspectivesofnewmusic.org/TOC492.pdf
  3. 3.
    A102562 (2014). http://oeis.org/A102562. Accessed 24 Nov 2018
  4. 4.
    Amiot, E.: New perspectives on rhythmic canons and the spectral conjecture. J. Math. Music 3(2), 71–84 (2009).  https://doi.org/10.1080/17459730903040709MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Clough, J., Douthett, J.: Maximally even sets. J. Music Theory 35(1/2), 93–173 (1991). http://www.jstor.org/stable/843811CrossRefGoogle Scholar
  6. 6.
    Demaine, E.D., et al.: The distance geometry of music. Comput. Geom. 42(5), 429–454 (2009).  https://doi.org/10.1016/j.comgeo.2008.04.005. http://www.sciencedirect.com/science/article/pii/S0925772108001156. Special Issue on the Canadian Conference on Computational Geometry (CCCG 2005and CCCG 2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kolountzakis, M.N., Matolcsi, M.: Algorithms for translational tiling. J. Math. Music 3(2), 85–97 (2009).  https://doi.org/10.1080/17459730903040899MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Vuza, D.T.: Supplementary sets and regular complementary unending canons (part one). Perspect. New Music 29, 22–49 (1991)CrossRefGoogle Scholar
  9. 9.
    Vuza, D.T.: Supplementary sets and regular complementary unending canons (part three). Perspect. New Music 30, 102–124 (1992)CrossRefGoogle Scholar
  10. 10.
    Vuza, D.T.: Supplementary sets and regular complementary unending canons (part two). Perspect. New Music 30, 184–207 (1992)CrossRefGoogle Scholar
  11. 11.
    Vuza, D.T.: Supplementary sets and regular complementary unending canons (part four). Perspect. New Music 31, 270–305 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Georgia State UniversityAtlantaUSA
  2. 2.Georgia Highlands CollegeRomeUSA

Personalised recommendations