Advertisement

A Parse-Based Framework for Coupled Rhythm Quantization and Score Structuring

  • Francesco FoscarinEmail author
  • Florent Jacquemard
  • Philippe Rigaux
  • Masahiko Sakai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11502)

Abstract

We present a formal language-based framework for MIDI-to-score transcription, the problem of converting a sequence of symbolic musical events with arbitrary timestamps into a structured music score. The framework aims at solving in one pass the two subproblems of rhythm quantization and score production. It relies, throughout the process, on an apriori hierarchical model of scores given by generative grammars.

We show that this coupled approach helps to make relevant and interrelated decisions, and we present an algorithm computing transcription solutions optimal with respect to both the fitness of the quantization to the input, and a measure of complexity of music notation.

References

  1. 1.
    Agon, C., Haddad, K., Assayag, G.: Representation and rendering of rhythm structures. In: Proceedings of the 2nd International Conference on WEB Delivering of Music (CW), pp. 109–113. IEEE Computer Society (2002)Google Scholar
  2. 2.
    Benetos, E., Dixon, S., Giannoulis, D., Kirchhoff, H., Klapuri, A.: Automatic music transcription: challenges and future directions. J. Intell. Inf. Syst. 41(3), 407–434 (2013)CrossRefGoogle Scholar
  3. 3.
    Bernabeu, J.F., Calera-Rubio, J., Iñesta, J.M., Rizo, D.: Melodic identification using probabilistic tree automata. J. New Music Res. 40(2), 93–103 (2011)CrossRefGoogle Scholar
  4. 4.
    Cogliati, A., Temperley, D., Duan, Z.: Transcribing human piano performances into music notation. In: Proceedings of the ISMIR, pp. 758–764 (2016)Google Scholar
  5. 5.
    Foscarin, F., Jacquemard, F., Rigaux, P.: Modeling and Learning Rhythm Structure https://hal.inria.fr/hal-02024437, (2019)
  6. 6.
    Gould, E.: Behind bars: the definitive guide to music notation. Faber Music (2011)Google Scholar
  7. 7.
    Granroth-Wilding, M., Steedman, M.J.: Statistical parsing for harmonic analysis of jazz chord sequences. In: Proceedings of the ICMC (2012)Google Scholar
  8. 8.
    Honing, H.: From time to time: the representation of timing and tempo. Comput. Music J. 25(3), 50–61 (2001)CrossRefGoogle Scholar
  9. 9.
    Huang, L.: Advanced dynamic programming in semiring and hypergraph frameworks. In: COLING (2008)Google Scholar
  10. 10.
    Jacquemard, F., Donat-Bouillud, P., Bresson, J.: A structural theory of rhythm notation based on tree representations and term rewriting. In: Collins, T., Meredith, D., Volk, A. (eds.) MCM 2015. LNCS (LNAI), vol. 9110, pp. 3–15. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-20603-5_1CrossRefzbMATHGoogle Scholar
  11. 11.
    Jahn, J.: Vector Optimization. Theory, Applications, and Extensions. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-17005-8CrossRefzbMATHGoogle Scholar
  12. 12.
    Lamarque, E., Goudard, M.J.: D’un rythme à l’autre, vol. 1–4. Henry Lemoine, Paris (1997)Google Scholar
  13. 13.
    Marsden, A., Tojo, S., Hirata, K.: No longer ‘somewhat arbitrary’: calculating salience in GTTM-style reduction. In: Proceedings of the 5th International Conference on Digital Libraries for Musicology, pp. 26–33. ACM (2018)Google Scholar
  14. 14.
    McLeod, A., Steedman, M.: Meter detection in symbolic music using a lexicalized PCFG. In: Proceedings of the SMC (2017)Google Scholar
  15. 15.
    Nakamura, E., Hamanaka, M., Hirata, K., Yoshii, K.: Tree-structured probabilistic model of monophonic written music based on the generative theory of tonal music. In: Proceedings of the ICASSP (2016)Google Scholar
  16. 16.
    Nakamura, E., Yoshii, K., Sagayama, S.: Rhythm transcription of polyphonic piano music based on merged-output HMM for multiple voices. IEEE/ACM TASLP abs/1701.08343 (2017)Google Scholar
  17. 17.
    Nauert, P.: A theory of complexity to constrain the approximation of arbitrary sequences of timepoints. Perspect. New Music 32(2), 226–263 (1994)CrossRefGoogle Scholar
  18. 18.
    Raphael, C.: A hybrid graphical model for rhythmic parsing. Artif. Intell. 137(1–2), 217–238 (2002)CrossRefGoogle Scholar
  19. 19.
    Rohrmeier, M.: Towards a generative syntax of tonal harmony. J. Math. Music 5(1), 35–53 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Francesco Foscarin
    • 1
    Email author
  • Florent Jacquemard
    • 2
  • Philippe Rigaux
    • 1
  • Masahiko Sakai
    • 3
  1. 1.CNAM ParisParisFrance
  2. 2.INRIA ParisParisFrance
  3. 3.Nagoya UniversityNagoyaJapan

Personalised recommendations