Advertisement

ComMute—Towards a Computational Musical Theory of Everything

  • Guerino MazzolaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11502)

Abstract

This paper draws future perspectives of music as a comprising cultural achievement of humans. We discuss the role of music for mathematics and physics from Pythagoras to String Theory, its global human presence, transcending specific fields of knowledge in its synthetical force that unifies distant fields of knowledge and action in the concrete and abstract realms.

Keywords

Theory of Everything Future music theory String theory 

References

  1. 1.
    Amiot, E.: Music Through Fourier Space. Springer Series Computational Music Science. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-319-45581-5CrossRefzbMATHGoogle Scholar
  2. 2.
    Agustín-Aquino, O.A., Junod, J., Mazzola, G.: Computational Counterpoint Worlds. Springer Series Computational Music Science. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-319-11236-7CrossRefzbMATHGoogle Scholar
  3. 3.
    Bars, I., Terning, J.: Extra Dimensions in Space and Time. Springer, New York (2010).  https://doi.org/10.1007/978-0-387-77638-5CrossRefzbMATHGoogle Scholar
  4. 4.
  5. 5.
    Friberg, A., Bresin, R., Sundberg, J.: Overview of the KTH rule system for music performance. Adv. Exp. Psychol. 2, 145–161 (2006). Special issue on Music PerformanceGoogle Scholar
  6. 6.
    Kinderman, W.: Artaria 195. University of Illinois Press, Urbana and Chicago (2003)Google Scholar
  7. 7.
    Larson, S.: Musical Forces. Indiana University Press, Bloomington (2012)Google Scholar
  8. 8.
    Mazzola, G., et al.: The Topos of Music—Geometric Logic of Concepts, Theory, and Performance. Birkhäuser, Basel (2002)zbMATHGoogle Scholar
  9. 9.
    Mazzola, G., Cherlin, P.B.: Flow, Gesture, and Spaces in Free Jazz-Towards a Theory of Collaboration. Springer Series Computational Music Science. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-92195-0CrossRefGoogle Scholar
  10. 10.
    Mazzola, G.: Gestural dynamics in modulation: (towards) a musical string theory. In: Pareyon, G., Pina-Romero, S., Agustin-Aquino, O.A., Lluis-Puebla, E. (eds.) The Musical-Mathematical Mind. Springer Series Computational Music Science, pp. 171–188. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-319-47337-6_18CrossRefGoogle Scholar
  11. 11.
    Mazzola, G.: The Topos of Music II: Performance. Springer Series Computational Music Science. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-319-64444-8CrossRefzbMATHGoogle Scholar
  12. 12.
    Mazzola, G., et al.: The Topos of Music III: Gestures. Springer Series Computational Music Science. Springer, Heidelberg (2018).  https://doi.org/10.1007/978-3-319-64481-3CrossRefGoogle Scholar
  13. 13.
    Munyaradzi, G., Zimidzi, W.: Comparison of western music and African music. Creat. Educ. 3(2), 193–195 (2012)CrossRefGoogle Scholar
  14. 14.
    Nugroho, G.: Teak Leaves at the Temples. DVD, Trimax Enterprises Film, New York (2007)Google Scholar
  15. 15.
    Penrose, R.: The Road to Reality. Vintage, London (2002)Google Scholar
  16. 16.
    Ravikiran, C.N.: Robert morris and the concept of melharmony. Perspect. New Music 52(2), 154–161 (2014)CrossRefGoogle Scholar
  17. 17.
    Schönberg, A.: Harmonielehre (1911). Universal Edition, Wien (1966)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of MusicUniversity of MinnesotaMinneapolisUSA

Personalised recommendations