Advertisement

Mercury\(^\mathrm{\textregistered }\): A Software Based on Fuzzy Clustering for Computer-Assisted Composition

  • Brian Martínez–Rodríguez
  • Vicente LiernEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11502)

Abstract

We present Mercury, a new software for computer-assisted composition based on fuzzy clustering algorithms. This software is able to generate a big number of transitions between any two different melodies, harmonic progressions or rhythmical patterns. Mercury works with symbolic music notation. The software is, therefore, able to read music and to export the generated musical production into MusicXML format. This paper focusses on some theoretical aspects of the CFT algorithm implemented in the software in order to create those complete transitions, overviewing not only the structure of the program but the user’s interface and its music notation module. Finally, the wide variety of compositional possibilities of Mercury are shown by means of several computational examples.

Keywords

Algorithmic composition Computer Fuzzy Clustering 

References

  1. 1.
    Ariza, C.: Two pioneering projects from the early history of computer-aided algorithmic composition. Comput. Music J. 35(3), 40–56 (2011)CrossRefGoogle Scholar
  2. 2.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)CrossRefGoogle Scholar
  3. 3.
    Biles, J.: GenJam: a genetic algorithm for generating jazz solos. In: Proceedings of International Computer Music Conference ICMC 1994, pp. 131–137. Michigan Publishing (1994)Google Scholar
  4. 4.
    Buteau, C.: Melodic clustering within topological spaces of Schumann’s Träumerei. In: Proceedings of International Computer Music Conference ICMC 2006, pp. 104–110. Tulane University, New Orleans (2006)Google Scholar
  5. 5.
    Dodge, C.: Profile: a musical fractal. Comput. Music J. 12(3), 10–14 (1988)CrossRefGoogle Scholar
  6. 6.
    Farbood, M., Schoner, B.: Analysis and synthesis of Palestrina-style counterpoint using Markov Chains. In: Proceedings of International Computer Music Conference ICMC 2001, pp. 1–4. Michigan Publishing (2001)Google Scholar
  7. 7.
    Gan, G., Ma, C., Wu, J.: Data Clustering: Theory, Algorithms, and Applications. SIAM, Philadelphia (2007)CrossRefGoogle Scholar
  8. 8.
    Johnson, R.: Messiaen. University of California Press, Paris (1989)Google Scholar
  9. 9.
    Krzyzaniak, M.: Interactive learning of timbral rhythms for percussion robots. Comput. Music J. 42(2), 35–51 (2018)CrossRefGoogle Scholar
  10. 10.
    Liern, V.: Fuzzy tuning systems: the mathematics of musicians. Fuzzy Sets Syst. 150(1), 35–52 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Martínez, B., Liern, V.: A fuzzy-clustering based approach for measuring similarity between melodies. In: Agustín-Aquino, O.A., Lluis-Puebla, E., Montiel, M. (eds.) MCM 2017. LNCS (LNAI), vol. 10527, pp. 279–290. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71827-9_21CrossRefGoogle Scholar
  12. 12.
    Martínez, B., Liern, V.: Comparación y transiciones espectrales mediante el algoritmo fuzzy c-means. In: Tecniacústica 2017: 48\(^\circ \) Congreso Español de Acústica; Encuentro Ibérico de Acústica; European Symposium on Underwater Acoustics Applications, European Symposium on Sustainable Building Acoustics: A Coruña, 3–6 Octubre 2017, pp. 1169–1175. Sociedad Española de Acústica (2017)Google Scholar
  13. 13.
    Miranda, E.: Cellular automata music: an interdisciplinary project. J. New Music. Res. 22(1), 3–21 (1993)Google Scholar
  14. 14.
    Messiaen, O.: The Technique of My Musical Language. Alphonse Leduc, Paris (1956)Google Scholar
  15. 15.
    Nierhaus, G.: Algorithmic Composition: Paradigms of Automated Music Generation. Springer, New York (2009).  https://doi.org/10.1007/978-3-211-75540-2CrossRefzbMATHGoogle Scholar
  16. 16.
    Roads, C.: Composing grammars. In: Proceedings of International Computer Music Conference ICMC 1977, pp. 54–132. University of California, San Diego (1977)Google Scholar
  17. 17.
    Selfridge-Field, E.: Beyond MIDI: The Handbook of Musical Codes. MIT Press, Cambridge (1997)Google Scholar
  18. 18.
    Tompkins, D.C.: A cluster analysis for mode identification in early music genres. In: Agustín-Aquino, O.A., Lluis-Puebla, E., Montiel, M. (eds.) MCM 2017. LNCS (LNAI), vol. 10527, pp. 312–323. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71827-9_24CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidad Politécnica de ValenciaValenciaSpain
  2. 2.Dep. Matemáticas para la Economía y la EmpresaUniversidad de ValenciaValenciaSpain

Personalised recommendations