Advertisement

Contrapuntal Aspects of the Mystic Chord and Scriabin’s Piano Sonata No. 5

  • Octavio A. Agustín-AquinoEmail author
  • Guerino Mazzola
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11502)

Abstract

We present statistical evidence for the importance of the “mystic chord” in Scriabin’s Piano Sonata No. 5, Op. 53, from a computational and mathematical counterpoint perspective. More specifically, we compute the effect sizes and perform \(\chi ^{2}\) tests with respect to the distributions of counterpoint symmetries in the Fuxian, mystic, Ionian and representatives of the other three possible counterpoint worlds in two passages of the work, which provide evidence of a qualitative change between the Fuxian and the mystic worlds in the sonata.

Keywords

Counterpoint Scriabin Mystic chord 

Notes

Acknowledgments

We thank Thomas Noll at Escola Superior de Música de Catalunya, Daniel Tompkins at Florida State University, and the anonymous referees for their valuable feedback.

References

  1. 1.
    Agustín-Aquino, O.A., Junod, J., Mazzola, G.: Computational Counterpoint Worlds. CMS. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-11236-7CrossRefzbMATHGoogle Scholar
  2. 2.
    Agustín-Aquino, O.A.: Counterpoint in \(2k\)-tone equal temperament. J. Math. Music 3(3), 153–164 (2009).  https://doi.org/10.1080/17459730903309807MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ballard, L., Bengston, M., Young, J.B.: The Alexander Scriabin Companion. Rowman & Littlefield, Lanham (2017)Google Scholar
  4. 4.
    Benjamin, T.: The Craft of Modal Counterpoint. Routledge, New York (2005)CrossRefGoogle Scholar
  5. 5.
    Cowell, H., Nicholls, D.: New Musical Resources. Cambridge University Press, Cambridge (1996)CrossRefGoogle Scholar
  6. 6.
    Cumming, G.: Understanding The New Statistics. Routledge, New York (2012)Google Scholar
  7. 7.
    Dejos, V.: Analyse et interprétation des six dernières sonates pour piano d’Alexandre Scriabine. Ph.D. thesis, Université Paris-Sorbonne (2014)Google Scholar
  8. 8.
    Eberle, G.: Zwischen Tonalität und Atonalität: Studien zur Harmonik Alexander Skrjabins, Berliner Musikwissenschaftliche Arbeiten, vol. 14. Musikverlag Emil Katzbichler, München-Salzburg (1978)Google Scholar
  9. 9.
    Fux, J.J.: Gradus Ad Parnasum. W. W. Norton, New York (1965)Google Scholar
  10. 10.
    Jeppesen, K.: Counterpoint. Dover Publications Inc., New York (1992)Google Scholar
  11. 11.
    Kostka, S., Payne, D.: Tonal Harmony, 3rd edn. McGraw-Hill Inc., Boston (1995)Google Scholar
  12. 12.
    Mazzola, G.: The Topos of Music, vol. I: Theory. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-319-64364-9CrossRefzbMATHGoogle Scholar
  13. 13.
    Nieto, A.: Una aplicación del teorema de contrapunto. B. Sc. thesis, ITAM (2010)Google Scholar
  14. 14.
    Scriabine, A.: Cinquème sonate pour piano, Op. 53. Self-published, Lausanne (1907)Google Scholar
  15. 15.
    Trombley, R.: Impressionism in music. In: DiMartino, D., et al. (ed.) Music in the 20th Century, vol. 2, p. 305. Routledge (1999)Google Scholar
  16. 16.
    Warner, R.M.: Applied Statistics. SAGE, California (2012)Google Scholar
  17. 17.
    Wise, H.H.: The relationship of pitch sets to formal structure in the last six piano sonatas of Scriabin. Ph.D. thesis, University of Rochester (1987)Google Scholar
  18. 18.
    Zydek, S.: The harmonic and melodic language in Alexander Scriabin’s Sonata No. 5, Op. 53 (2010). essay for Dr. Janners’ course Music Theory IIGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto de Física y MatemáticasUniversidad Tecnológica de la MixtecaOaxacaMexico
  2. 2.School of MusicUniversity of MinnesotaMinneapolisUSA

Personalised recommendations