Advertisement

CORAL: A Corpus of Ontological Requirements Annotated with Lexico-Syntactic Patterns

  • Alba Fernández-IzquierdoEmail author
  • María Poveda-VillalónEmail author
  • Raúl García-Castro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11503)

Abstract

Ontological requirements play a key role in ontology development as they determine the knowledge that needs to be modelled. In addition, the analysis of such requirements can be used (a) to improve ontology testing by easing the automation of requirements into tests; (b) to improve the requirements specification activity; or (c) to ease ontology reuse by facilitating the identification of patterns. However, there is a lack of openly available ontological requirements published together with their associated ontologies, which hinders such analysis. Therefore, in this work we present CORAL (Corpus of Ontological Requirements Annotated with Lexico-syntactic patterns), an openly available corpus of 834 ontological requirements annotated and 29 lexico-syntactic patterns, from which 12 are proposed in this work. CORAL is openly available in three different open formats, namely, HTML, CSV and RDF under “Creative Commons Attribution 4.0 International” license.

Keywords

Corpus Linked data Ontological requirements Lexico-syntactic patterns 

References

  1. 1.
    Aguado de Cea, G., Gómez-Pérez, A., Montiel-Ponsoda, E., Suárez-Figueroa, M.C.: Natural language-based approach for helping in the reuse of ontology design patterns. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 32–47. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87696-0_6CrossRefGoogle Scholar
  2. 2.
    Baader, F., Horrocks, I., Sattler, U.: Description logics. Found. Artif. Intell. 3, 135–179 (2008)CrossRefGoogle Scholar
  3. 3.
    Bezerra, C., Freitas, F., Santana, F.: Evaluating ontologies with competency questions. In: 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 3, pp. 284–285. IEEE (2013)Google Scholar
  4. 4.
    Daga, E., et al.: NeOn D2. 5.2 Pattern Based Ontology Design: Methodology and Software Support (2010)Google Scholar
  5. 5.
    Dennis, M., van Deemter, K., Dell’Aglio, D., Pan, J.Z.: Computing authoring tests from competency questions: experimental validation. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 243–259. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68288-4_15CrossRefGoogle Scholar
  6. 6.
    Gangemi, A., Presutti, V.: Ontology design patterns. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 221–243. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-92673-3_10CrossRefGoogle Scholar
  7. 7.
    Lopez, V., Pasin, M., Motta, E.: AquaLog: an ontology-portable question answering system for the semantic web. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 546–562. Springer, Heidelberg (2005).  https://doi.org/10.1007/11431053_37CrossRefGoogle Scholar
  8. 8.
    Malone, J., Brown, A., Lister, A.L., Ison, J., Hull, D., Parkinson, H., Stevens, R.: The software ontology (SWO): a resource for reproducibility in biomedical data analysis, curation and digital preservation. J. Biomed. Semant. 5(1), 25 (2014)CrossRefGoogle Scholar
  9. 9.
    Montiel-Ponsoda, E.: Multilingualism in Ontologies - Building Patterns and Representation Models. LAP Lambert Academic Publishing, Germany (2011)Google Scholar
  10. 10.
    Panov, P., Soldatova, L.N., Džeroski, S.: Generic ontology of datatypes. Inf. Sci. 329, 900–920 (2016)CrossRefGoogle Scholar
  11. 11.
    Parkkila, J., Radulovic, F., Garijo, D., Poveda-Villalón, M., Ikonen, J., Porras, J., Gómez-Pérez, A.: An ontology for videogame interoperability. Multimedia Tools Appl. 76(4), 4981–5000 (2017)CrossRefGoogle Scholar
  12. 12.
    Presutti, V., Daga, E., Gangemi, A., Blomqvist, E.: eXtreme design with content ontology design patterns. In: Proceedings of Workshop on Ontology Patterns (2009)Google Scholar
  13. 13.
    Ren, Y., Parvizi, A., Mellish, C., Pan, J.Z., van Deemter, K., Stevens, R.: Towards competency question-driven ontology authoring. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 752–767. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07443-6_50CrossRefGoogle Scholar
  14. 14.
    SmartM2M: SAREF extension investigation Technical report (TR 103 411)Google Scholar
  15. 15.
    Suárez-Figueroa, M.C., et al.: NeOn D5.1.1 NeOn Modelling Components (2007)Google Scholar
  16. 16.
    Suárez-Figueroa, M.C., Gómez-Pérez, A.: First attempt towards a standard glossary of ontology engineering terminology. In: Proceedings of 8th International Conference on Terminology and Knowledge Engineering (TKE 2008), p. 1 (2008)Google Scholar
  17. 17.
    Suárez-Figueroa, M.C., Gómez-Pérez, A., Fernandez-Lopez, M.: The NeOn methodology framework: a scenario-based methodology for ontology development. Appl. Ontol. 10(2), 107–145 (2015)CrossRefGoogle Scholar
  18. 18.
    Suárez-Figueroa, M.C., Gómez-Pérez, A., Villazón-Terrazas, B.: How to write and use the ontology requirements specification document. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009. LNCS, vol. 5871, pp. 966–982. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-05151-7_16CrossRefGoogle Scholar
  19. 19.
    Zemmouchi-Ghomari, L., Ghomari, A.R.: Translating natural language competency questions into SPARQLQueries: a case study. In: The First International Conference on Building and Exploring Web Based Environments, pp. 81–86 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Ontology Engineering GroupUniversidad Politécnica de MadridMadridSpain

Personalised recommendations