Advertisement

A Hybrid Approach for Aspect-Based Sentiment Analysis Using a Lexicalized Domain Ontology and Attentional Neural Models

  • Olaf Wallaart
  • Flavius FrasincarEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11503)

Abstract

This work focuses on sentence-level aspect-based sentiment analysis for restaurant reviews. A two-stage sentiment analysis algorithm is proposed. In this method, first a lexicalized domain ontology is used to predict the sentiment and as a back-up algorithm a neural network with a rotatory attention mechanism (LCR-Rot) is utilized. Furthermore, two features are added to the backup algorithm. The first extension changes the order in which the rotatory attention mechanism operates (LCR-Rot-inv). The second extension runs over the rotatory attention mechanism for multiple iterations (LCR-Rot-hop). Using the SemEval-2015 and SemEval-2016 data, we conclude that the two-stage method outperforms the baseline methods, albeit with a small percentage. Moreover, we find that the method where we iterate multiple times over a rotatory attention mechanism has the best performance.

References

  1. 1.
    Adi, Y., Kermany, E., Belinkov, Y., Lavi, O., Goldberg, Y.: Fine-grained analysis of sentence embeddings using auxiliary prediction tasks. In: Proceedings of the 2017 International Conference on Learning Representations (ICLR 2017) (2017). CoRR abs/1608.04207Google Scholar
  2. 2.
    Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Proceedings of the 24th International Conference on Neural Information Processing Systems (NIPS 2011), pp. 2546–2554. Curran Associates (2011)Google Scholar
  3. 3.
    Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit. O’Reilly Media, Sebastopol (2009)zbMATHGoogle Scholar
  4. 4.
    Cambria, E.: Affective computing and sentiment analysis. IEEE Intell. Syst. 31(2), 102–107 (2016).  https://doi.org/10.1109/mis.2016.31CrossRefGoogle Scholar
  5. 5.
    Cambria, E., Hussain, A.: Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis. SC, vol. 1. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23654-4CrossRefGoogle Scholar
  6. 6.
    Chen, P., Sun, Z., Bing, L., Yang, W.: Recurrent attention network on memory for aspect sentiment analysis. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP 2017), pp. 452–461. Association for Computational Linguistics (2017)Google Scholar
  7. 7.
    Hutto, C.J., Gilbert, E.: VADER: a parsimonious rule-based model for sentiment analysis of social media text. In: Proceedings of the 8th International Conference on Weblogs and Social Media (ICWSM 2014). AAAI Press (2014)Google Scholar
  8. 8.
    Liu, B.: Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cambridge University Press, New York (2015)CrossRefGoogle Scholar
  9. 9.
    Liu, Q., Zhang, H., Zeng, Y., Huang, Z., Wu, Z.: Content attention model for aspect based sentiment analysis. In: Proceedings of the 27th International World Wide Web Conference (WWW 2018), pp. 1023–1032. ACM Press (2018).  https://doi.org/10.1145/3178876.3186001
  10. 10.
    Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995).  https://doi.org/10.1145/219717.219748CrossRefGoogle Scholar
  11. 11.
    Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of The 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), pp. 1532–1543. Association for Computational Linguistics (2014)Google Scholar
  12. 12.
    Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I.: Semeval-2015 task 12: aspect based sentiment analysis. In: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), pp. 486–495. Association for Computational Linguistics (2015)Google Scholar
  13. 13.
    Pontiki, M., Galanis, D., Papageorgiou, H., Manandhar, S., Androutsopoulos, I.: Semeval-2016 task 5: aspect based sentiment analysis. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval 2016), pp. 19–30. Association for Computational Linguistics (2016)Google Scholar
  14. 14.
    Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., Manandhar, S.: Semeval-2014 task 4: aspect based sentiment analysis. In: Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 27–35. Association for Computational Linguistics and Dublin City University, August 2014Google Scholar
  15. 15.
    Schouten, K., Frasincar, F.: Survey on aspect-level sentiment analysis. IEEE Trans. Knowl. Data Eng. (TKDE) 28(3), 813–830 (2016)CrossRefGoogle Scholar
  16. 16.
    Schouten, K., Frasincar, F.: Ontology-driven sentiment analysis of product and service aspects. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 608–623. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-93417-4_39CrossRefGoogle Scholar
  17. 17.
    Schouten, K., Frasincar, F., de Jong, F.: Ontology-enhanced aspect-based sentiment analysis. In: Cabot, J., De Virgilio, R., Torlone, R. (eds.) ICWE 2017. LNCS, vol. 10360, pp. 302–320. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60131-1_17CrossRefGoogle Scholar
  18. 18.
    Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods on Natural Language Processing (EMNLP, 2013), vol. 1631, pp. 1631–1642. ACL, January 2013Google Scholar
  19. 19.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Wang, Y., Huang, M., Zhu, X., Zhao, L.: Attention-based LSTM for aspect-level sentiment classification. In: Proceedings of the 2016 Conference on Empirical Methods on Natural Language Processing (EMNLP 2016), pp. 606–615. Association for Computational Linguistics (2016).  https://doi.org/10.18653/v1/d16-1058
  21. 21.
    Zheng, S., Xia, R.: Left-center-right separated neural network for aspect-based sentiment analysis with rotatory attention (2018). arXiv preprint arXiv:1802.00892

Copyright information

© Springer Nature Switzerland AG 2019

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Erasmus University RotterdamRotterdamThe Netherlands

Personalised recommendations