Reformulation-Based Query Answering for RDF Graphs with RDFS Ontologies

  • Maxime BuronEmail author
  • François GoasdouéEmail author
  • Ioana ManolescuEmail author
  • Marie-Laure MugnierEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11503)


Query answering in RDF knowledge bases has traditionally been performed either through graph saturation, i.e., adding all implicit triples to the graph, or through query reformulation, i.e., modifying the query to look for the explicit triples entailing precisely what the original query asks for. The most expressive fragment of RDF for which Reformulation-based query answering exists is the so-called database fragment [13], in which implicit triples are restricted to those entailed using an RDFS ontology. Within this fragment, query answering was so far limited to the interrogation of data triples (non-RDFS ones); however, a powerful feature specific to RDF is the ability to query data and schema triples together. In this paper, we address the general query answering problem by reducing it, through a pre-query reformulation step, to that solved by the query reformulation technique of [13]. We also report on experiments demonstrating the low cost of our reformulation algorithm.


Query answering Query reformulation RDF RDFS 



This work is supported by the Inria Project Lab grant iCoda, a collaborative project between Inria and several major French media.


  1. 1.
    RDF 1.1 Concepts and Abstract Syntax.
  2. 2.
  3. 3.
    SPARQL 1.1 Query Language.
  4. 4.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  5. 5.
    Adjiman, P., Goasdoué, F., Rousset, M.C.: SomeRDFS in the semantic web. JODS 8, 158–181 (2007)zbMATHGoogle Scholar
  6. 6.
    Arenas, M., Gutierrez, C., Pérez, J.: Foundations of RDF databases. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 158–204. Springer, Heidelberg (2009). Scholar
  7. 7.
    Bishop, B., Kiryakov, A., Ognyanoff, D., Peikov, I., Tashev, Z., Velkov, R.: OWLIM: a family of scalable semantic repositories. Semant. Web 2(1), 33–42 (2011)Google Scholar
  8. 8.
    Broekstra, J., Kampman, A.: Inferencing and truth maintenance in RDF schema. In: PSSS1 Workshop (2003).
  9. 9.
    Buron, M., Goasdoué, F., Manolescu, I., Mugnier, M.L.: Reformulation-based query answering for RDF graphs with RDFS ontologies. Research report, Inria, March 2019.
  10. 10.
    Bursztyn, D., Goasdoué, F., Manolescu, I.: Optimizing reformulation-based query answering in RDF. In: EDBT (2015)CrossRefGoogle Scholar
  11. 11.
    Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: the DL-Lite family. J. Autom. Reasoning (JAR) 39(3), 385–429 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Goasdoué, F., Karanasos, K., Leblay, J., Manolescu, I.: View selection in semantic web databases. PVLDB 5(2) (2011). Scholar
  13. 13.
    Goasdoué, F., Manolescu, I., Roatis, A.: Efficient query answering against dynamic RDF databases. In: EDBT (2013).
  14. 14.
    Kaoudi, Z., Miliaraki, I., Koubarakis, M.: RDFS reasoning and query answering on top of DHTs. In: Sheth, A., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 499–516. Springer, Heidelberg (2008). Scholar
  15. 15.
    Lanti, D., Xiao, G., Calvanese, D.: Cost-driven ontology-based data access. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 452–470. Springer, Cham (2017). Scholar
  16. 16.
    Lutz, C., Seylan, İ., Toman, D., Wolter, F.: The combined approach to OBDA: taming role hierarchies using filters. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 314–330. Springer, Heidelberg (2013). Scholar
  17. 17.
    Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF data. VLDB J. 19, 91–113 (2010)CrossRefGoogle Scholar
  18. 18.
    Urbani, J., van Harmelen, F., Schlobach, S., Bal, H.: QueryPIE: backward reasoning for OWL Horst over very large knowledge bases. In: Aroyo, L., et al. (eds.) ISWC 2011. LNCS, vol. 7031, pp. 730–745. Springer, Heidelberg (2011). Scholar
  19. 19.
    Urbani, J., Piro, R., van Harmelen, F., Bal, H.E.: Hybrid reasoning on OWL RL. Semant. Web 5(6), 423–447 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  1. 1.Inria SaclayPalaiseauFrance
  2. 2.LIX (UMR 7161, CNRS and Ecole polytechnique)PalaiseauFrance
  3. 3.Univ Rennes, CNRS, IRISALannionFrance
  4. 4.Univ. Montpellier, LIRMM, InriaMontpellierFrance

Personalised recommendations